From Science direct: One of the nanowires was covered with a 2-Hydroxyethyl methacrylate based compound to prevent hydrogen from reaching the wire. The compound was dried by a UV source and tested in chamber for comparison with previous measurements. The results shows that temperature effects can be reduced by a digital signal processing algorithm without measuring temperature near or at the substrate. With this method no additional temperature probes are necessary making this solution a candidate for ultra low power wireless applications.
MULTIFILE
Author supplied from the article: Abstract A temperature compensated hydrogen sensor was designed and made capable of detecting H2 within a broad range of 100–10.000 ppm while compensating instantaneously for large (±25 °C) temperature variations. Two related operational constraints have been simultaneously addressed: (1) Selective, and sensitive detection under large temperature changes, (2) Fast warning at low and increasing H2 levels. Accurate measurements of hydrogen concentrations were enabled by matching relevant time-constants. This was achieved with a microchip having two temperature coupled palladium nanowires. One of the H2 sensitive Pd nanowires was directly exposed to hydrogen, whilst the other nanowire was used as a temperature sensor and as a reference. A drop forging technique was used to passivate the second Pd wire against H2 sensing. Temperature effects could be substantially reduced with a digital signal processing algorithm. Measurements were done in a test chamber, enabling the hydrogen concentration to be controlled over short and long periods. An early response for H2 sensing is attainable in the order of 600 milliseconds and an accurate value for the absolute hydrogen concentration can be obtained within 15 s.
LINK
Semi-closed greenhouses have been developed in which window ventilation is minimized due to active cooling, enabling enhanced CO2 concentrations at high irradiance. Cooled and dehumidified air is blown into the greenhouse from below or above the canopy. Cooling below the canopy may induce vertical temperature gradients along the length of the plants. Our first aim was to analyze the effect of the positioning of the inlet of cooled and dehumidified air on the magnitudes of vertical temperature and VPD gradients in the semi-closed greenhouses. The second aim was to investigate the effects of vertical temperature gradients on assimilate production, partitioning, and fruit growth. Tomato crops were grown year-round in four semiclosed greenhouses with cooled and dehumidified air blown into the greenhouses from below or above the crop. Cooling below the canopy induced vertical temperature and VPD gradients. The temperature at the top of the canopy was over 5°C higher than at the bottom, when outside solar radiation was high (solar radiation >250 J cm-2 h-1). Total dry matter production was not affected by the location of the cooling (4.64 and 4.80 kg m-2 with cooling from above and from below, respectively). Percentage dry matter partitioning to the fruits was 74% in both treatments. Average over the whole growing season the fresh fruit weight of the harvested fruits was not affected by the location of cooling (118 vs 112 g fruit-1). However, during summer period the average fresh fruit weight of the harvested fruits in the greenhouse with cooling from below was higher than in the greenhouse with cooling from above (124 vs 115 g fruit-1).
DOCUMENT