From the article: "A facile approach for the fabrication of large-scale interdigitated nanogap electrodes (nanogap IDEs) with a controllable gap was demonstrated with conventional micro-fabrication technology to develop chemocapacitors for gas sensing applications. In this work, interdigitated nanogap electrodes (nanogap IDEs) with gaps from 50–250 nm have been designed and processed at full wafer-scale. These nanogap IDEs were then coated with poly(4-vinyl phenol) as a sensitive layer to form gas sensors for acetone detection at low concentrations. These acetone sensors showed excellent sensing performance with a dynamic range from 1000 ppm to 10 ppm of acetone at room temperature and the observed results are compared with conventional interdigitated microelectrodes according to our previous work. Sensitivity and reproducibility of devices are discussed in detail. Our approach of fabrication of nanogap IDEs together with a simple coating method to apply the sensing layer opens up possibilities to create various nanogap devices in a cost-effective manner for gas sensing applications"
MULTIFILE
Plasmid-mediated dissemination of antibiotic resistance among fecal Enterobacteriaceae in natural ecosystems may contribute to the persistence of antibiotic resistance genes in anthropogenically impacted environments. Plasmid transfer frequencies measured under laboratory conditions might lead to overestimation of plasmid transfer potential in natural ecosystems. This study assessed differences in the conjugative transfer of an IncP-1 (pKJK5) plasmid to three natural Escherichia coli strains carrying extended-spectrum beta-lactamases, by filter mating. Matings were performed under optimal laboratory conditions (rich LB medium and 37°C) and environmentally relevant temperatures (25, 15 and 9°C) or nutrient regimes mimicking environmental conditions and limitations (synthetic wastewater and soil extract). Under optimal nutrient conditions and temperature, two recipients yielded high transfer frequencies (5 × 10–1) while the conjugation frequency of the third strain was 1000-fold lower. Decreasing mating temperatures to psychrophilic ranges led to lower transfer frequencies, albeit all three strains conjugated under all the tested temperatures. Low nutritive media caused significant decreases in transconjugants (−3 logs for synthetic wastewater; −6 logs for soil extract), where only one of the strains was able to produce detectable transconjugants. Collectively, this study highlights that despite less-than-optimal conditions, fecal organisms may transfer plasmids in the environment, but the transfer of pKJK5 between microorganisms is limited mainly by low nutrient conditions.
MULTIFILE
Improving estrus detection accuracy could improve sow conception rates,leading to higher production efficiency. Current observation-based estrusdetection practices are labor intensive and less accurate. Around estrus, bodytemperature and activity change. Therefore in this study a telemetric monitoringsystem for body temperature and activity was tested. Firstly Templant2 sensors(TeleMetronics) were validated under lab conditions for temperatures from 35°Cto 45°C, using a water basin with a Julabo heater and a P600 thermometer.Activity measurements were validated with the sensors attached to a stick,simulating sow movements. Secondly, sensors were attached externally to 4gilts and 4 sows for 30 minutes, testing functionality. Thirdly, activity of sowswas recorded manually for 3 days around estrus. Results showed that under labconditions temperature results of sensors, heater and thermometer were highlycorrelated (linear regression, R2=0,96; slope 1,1). Simulated activitiescorresponded consistently with peaks in sensor values. Activity was measuredreliably with the sensor attached externally to the sows. On the farm, sowsshowed more activity (manual observations, P<0.05 for standing up, lying down,sitting down and walking) the day before insemination. We conclude thatmonitoring activity and body temperature is a promising tool for estrousdetection in sows.
LINK
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.
MSEs have encountered limitations while pushing the limits of catheter tip sensors performance. The limitations summarized: - sensors are not immune to electrical signal noise, cross talk, and EM fields; - sensors are not immune to high magnetic fields, i.e. not suitable for MR imaging; - extending the amount of sensors on the catheter tip is limited due to cluttering of wires. A fundamentally different approach using integrated optics is chosen for developing a new generation catheter sensors. The complexity of the design and production problems represents a knowledge gap, that can be bridged in the proposed consortium. This project consists of four work packages, total duration two years, subdivided into four phases. A crucial deliverable of the project is presented at the end of phase IV (WP4), namely a demonstrator integrating pressure and temperature sensors (obtained from WP1) with a newly designed readout system. This system is modularly extendable for future catheter tip sensors. In WP1, pressure- and temperature sensors are developed using two design approaches. In WP2 the influence of downscaling an ultrasound MZI device is explored and the microfabrication process parameters are studied. An additional goal of WP2 is to find the most suitable method for measuring lactate concentration. Among the deliverables five manuscripts: manuscript 1 includes simulations and measurements of the developed pressure and temperature sensors, manuscript 2 answers the question: can a grated fiber be used for measuring pressure and temperature on a tip? Manuscript 3 answers the question: which method is most suitable for measuring lactate concentration on a tip? Manuscript 4 answers the question: does a US intensity detector fit on a catheter tip while obeying the LoR? Manuscript 5 describes the performance of the demonstrator (Phase IV), i.e. integration of T/P sensing with a modular read out system.
The application of sensors in water technology is a crucial step to provide broader, more efficient and circular systems. Among the different technologies used in this field, ultrasound-based systems are widely used, basically to generate energy peaks for cell lysis and particle separation. In this work, we propose the adaptation of an ultrasound system to monitor the concentration of solid particles in wastewater treatment plants settlers as well as to indicate sludge level (real time). A similar sensor was developed and tested in another project which operated successfully at solids concentration up to 1% in UASB reactors. Such measurements are nowadays obtained via time-consuming physical (solids) analysis, which can compromise the efficiency of the settlers and the quality of the effluent. The present project proposes an improved version of the sensor, which will combine solids concentration monitoring and sludge level detection. The defined targets have the intention to make a sensor with a much broader range of applications, been suitable not only for UASB reactors but also to settler and aerobic tanks. The project is a cooperation between the Water Technology lectoraat of NHL Stenden University of Applied Sciences, two SME’s - YNOVIO B.V. and Lamp-ion B.V. - and the INCT group (Brazil). If proven feasible, the concept can generate a big business market to the involved Dutch partners as well as favor the automation of WWTP in the Netherlands, Brazil and around the world.