Background: Art therapy (AT) is frequently offered to children and adolescents with psychosocial problems. AT is an experiential form of treatment in which the use of art materials, the process of creation in the presence and guidance of an art therapist, and the resulting artwork are assumed to contribute to the reduction of psychosocial problems. Although previous research reports positive effects, there is a lack of knowledge on which (combination of) art therapeutic components contribute to the reduction of psychosocial problems in children and adolescents. Method: A systematic narrative review was conducted to give an overview of AT interventions for children and adolescents with psychosocial problems. Fourteen databases and four electronic journals up to January 2020 were systematically searched. The applied means and forms of expression, therapist behavior, supposed mechanisms of change, and effects were extracted and coded. Results: Thirty-seven studies out of 1,299 studies met the inclusion criteria. This concerned 16 randomized controlled trials, eight controlled trials, and 13 single-group pre–post design studies. AT interventions for children and adolescents are characterized by a variety of materials/techniques, forms of structure such as giving topics or assignments, and the use of language. Three forms of therapist behavior were seen: non-directive, directive, and eclectic. All three forms of therapist behavior, in combination with a variety of means and forms of expression, showed significant effects on psychosocial problems. Conclusions: The results showed that the use of means and forms of expression and therapist behavior is applied flexibly. This suggests the responsiveness of AT, in which means and forms of expression and therapist behavior are applied to respond to the client's needs and circumstances, thereby giving positive results for psychosocial outcomes. For future studies, presenting detailed information on the potential beneficial effects of used therapeutic perspectives, means, art techniques, and therapist behavior is recommended to get a better insight into (un)successful art therapeutic elements.
Introduction Around 25% of metastatic breast cancer (mBC) patients develop brain metastases, which vastly affects their overall survival and quality of life. According to the current clinical guidelines, regular magnetic resonance imaging screening is not recommended unless patients have recognized central nervous system-related symptoms. Patient Presentation The patient participated in the EFFECT study, a randomized controlled trial aimed to assess the effects of a 9-month structured, individualized and supervised exercise intervention on quality of life, fatigue and other cancer and treatment-related side effects in patients with mBC. She attended the training sessions regularly and was supervised by the same trainer throughout the exercise program. In month 7 of participation, her exercise trainer detected subtle symptoms (e.g., changes in movement pattern, eye movement or balance), which had not been noticed or reported by the patient herself or her family, and which were unlikely to have been detected by the oncologist or other health care providers at that point since symptoms were exercise related. When suspicion of brain metastases was brought to the attention of the oncologist by the exercise trainer, the response was immediate, and led to early detection and treatment of brain metastases. Conclusion and clinical implications The brain metastases of this patient were detected earlier due to the recognition of subtle symptoms detected by her exercise trainer and the trust and rapid action by the clinician. The implementation of physical exercise programs for cancer patients requires well-trained professionals who know how to recognize possible alterations in patients and also, good communication between trainers and the medical team to enable the necessary actions to be taken.
BackgroundPhysical exercise is an intervention that might protect against doxorubicin‐induced cardiotoxicity. In this meta‐analysis and systematic review, we aimed to estimate the effect of exercise on doxorubicin‐induced cardiotoxicity and to evaluate mechanisms underlying exercise‐mediated cardioprotection using (pre)clinical evidence.Methods and ResultsWe conducted a systematic search in PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases. Cochrane's and Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk‐of‐bias tools were used to assess the validity of human and animal studies, respectively. Cardiotoxicity outcomes reported by ≥3 studies were pooled and structured around the type of exercise intervention. Forty articles were included, of which 3 were clinical studies. Overall, in humans (sample sizes ranging from 24 to 61), results were indicative of exercise‐mediated cardioprotection, yet they were not sufficient to establish whether physical exercise protects against doxorubicin‐induced cardiotoxicity. In animal studies (n=37), a pooled analysis demonstrated that forced exercise interventions significantly mitigated in vivo and ex vivo doxorubicin‐induced cardiotoxicity compared with nonexercised controls. Similar yet slightly smaller effects were found for voluntary exercise interventions. We identified oxidative stress and related pathways, and less doxorubicin accumulation as mechanisms underlying exercise‐induced cardioprotection, of which the latter could act as an overarching mechanism.ConclusionsAnimal studies indicate that various exercise interventions can protect against doxorubicin‐induced cardiotoxicity in rodents. Less doxorubicin accumulation in cardiac tissue could be a key underlying mechanism. Given the preclinical evidence and limited availability of clinical data, larger and methodologically rigorous clinical studies are needed to clarify the role of physical exercise in preventing cardiotoxicity in patients with cancer.RegistrationURL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42019118218.
MULTIFILE
Low back pain is the leading cause of disability worldwide and a significant contributor to work incapacity. Although effective therapeutic options are scarce, exercises supervised by a physiotherapist have shown to be effective. However, the effects found in research studies tend to be small, likely due to the heterogeneous nature of patients' complaints and movement limitations. Personalized treatment is necessary as a 'one-size-fits-all' approach is not sufficient. High-tech solutions consisting of motions sensors supported by artificial intelligence will facilitate physiotherapists to achieve this goal. To date, physiotherapists use questionnaires and physical examinations, which provide subjective results and therefore limited support for treatment decisions. Objective measurement data obtained by motion sensors can help to determine abnormal movement patterns. This information may be crucial in evaluating the prognosis and designing the physiotherapy treatment plan. The proposed study is a small cohort study (n=30) that involves low back pain patients visiting a physiotherapist and performing simple movement tasks such as walking and repeated forward bending. The movements will be recorded using sensors that estimate orientation from accelerations, angular velocities and magnetometer data. Participants complete questionnaires about their pain and functioning before and after treatment. Artificial analysis techniques will be used to link the sensor and questionnaire data to identify clinically relevant subgroups based on movement patterns, and to determine if there are differences in prognosis between these subgroups that serve as a starting point of personalized treatments. This pilot study aims to investigate the potential benefits of using motion sensors to personalize the treatment of low back pain. It serves as a foundation for future research into the use of motion sensors in the treatment of low back pain and other musculoskeletal or neurological movement disorders.