Ageing brings about physiological changes that affect people’s thermal sensitivity and thermoregulation. The majority of older Australians prefer to age in place and modifications to the home environment are often required to accommodate the occupants as they age and possibly become frail. However, modifications to aid thermal comfort are not always considered. Using a qualitative approach this study aims to understand the thermal qualities of the existing living environment of older South Australians, their strategies for keeping cool in hot weather and warm in cold weather and to identify existing problems related to planning and house design, and the use of heating and cooling. Data were gathered via seven focus group sessions with 49 older people living in three climate zones in South Australia. The sessions yielded four main themes, namely ‘personal factors’, ‘feeling’, ‘knowing’ and ‘doing’. These themes can be used as a basis to develop information and guidelines for older people in dealing with hot and cold weather. Original publication at MDPI: https://doi.org/10.3390/ijerph16060935 © 2018 by the authors. Licensee MDPI.
MULTIFILE
Cities are confronted with more frequent heatwaves of increasing intensity discouraging people from using urban open spaces that are part of their daily lives. Climate proofing cities is an incremental process that should begin where it is needed using the most cost-efficient solutions to mitigate heat stress. However, for this to be achieved the factors that influence the thermal comfort of users, such as the layout of local spaces, their function and the way people use them needs to be identified first. There is currently little evidence available on the effectiveness of heat stress interventions in different types of urban space.The Cool Towns Heat Stress Measurement Protocol provides basic guidance to enable a full Thermal Comfort Assessment (TCA) to be conducted at street-level. Those involved in implementing climate adaptation strategies in urban areas, such as in redevelopments will find practical support to identify places where heat stress may be an issue and suggestions for effective mitigation measures. For others, such as project developers, and spatial designers such as landscape architects and urban planners it provides practical instructions on how to evaluate and provide evidence-based justification for the selection of different cooling interventions for example trees, water features, and shade sails, for climate proofing urban areas.
MULTIFILE
Thermal comfort -the state of mind, which expresses satisfaction with the thermal environment- is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.