In the course of our supervisory work over the years we have noticed that qualitative research tends to evoke a lot of questions and worries, so-called frequently asked questions (FAQs). This series of four articles intends to provide novice researchers with practical guidance for conducting high-quality qualitative research in primary care. By ‘novice’ we mean Master’s students and junior researchers, as well as experienced quantitative researchers who are engaging in qualitative research for the first time. This series addresses their questions and provides researchers, readers, reviewers and editors with references to criteria and tools for judging the quality of qualitative research papers. The first article provides an introduction to this series. The second article focused on context, research questions and designs. The third article focused on sampling, data collection and analysis. This fourth article addresses FAQs about trustworthiness and publishing. Quality criteria for all qualitative research are credibility, transferability, dependability, and confirmability. Reflexivity is an integral part of ensuring the transparency and quality of qualitative research. Writing a qualitative research article reflects the iterative nature of the qualitative research process: data analysis continues while writing. A qualitative research article is mostly narrative and tends to be longer than a quantitative paper, and sometimes requires a different structure. Editors essentially use the criteria: is it new, is it true, is it relevant? An effective cover letter enhances confidence in the newness, trueness and relevance, and explains why your study required a qualitative design. It provides information about the way you applied quality criteria or a checklist, and you can attach the checklist to the manuscript.
BACKGROUND: Accurate and timely patient handovers from hospital to other health care settings are essential in order to provide high quality of care and to ensure patient safety. We aim to investigate the effect of a comprehensive discharge bundle, the Transfer Intervention Procedure (TIP), on the time between discharge and the time when the medical, medication and nursing handovers are sent to the next health care provider. Our goal is to reduce this time to 24 h after hospital discharge. Secondary outcomes are length of hospital stay and unplanned readmission within 30 days rates.METHODS: The current study is set to implement the TIP, a structured discharge process for all patients admitted to the hospital, with the purpose to provide a safe, reliable and accurate discharge process. Eight hospitals in the Netherlands will implement the TIP on one internal medicine and one surgical ward. An interrupted time series (ITS) analysis, with pre-defined pre and post intervention periods, will be conducted. Patients over the age of 18 admitted for more than 48 h to the participating wards are eligible for inclusion. At least 1000 patients will be included in both the pre-implementation and post-implementation group. The primary outcome is the number of medical, medication and nursing handovers being sent within 24 h after discharge. Secondary outcomes are length of hospital stay and unplanned readmission within 30 days. With regard to potential confounders, data will be collected on patient's characteristics and information regarding the hospitalization. We will use segmented regression methods for analyzing the data, which allows assessing how much TIP changed the outcomes of interest immediately and over time.DISCUSSION: This study protocol describes the implementation of TIP, which provides the foundation for a safe, reliable and accurate discharge process. If effective, nationwide implementation of the discharge bundle may result from this study protocol.TRIAL REGISTRATION: Dutch Trial Registry: NTR5951.
Background: Follow‑up of curatively treated primary breast cancer patients consists of surveillance and aftercare and is currently mostly the same for all patients. A more personalized approach, based on patients’ individual risk of recurrence and personal needs and preferences, may reduce patient burden and reduce (healthcare) costs. The NABOR study will examine the (cost‑)effectiveness of personalized surveillance (PSP) and personalized aftercare plans (PAP) on patient‑reported cancer worry, self‑rated and overall quality of life and (cost‑)effectiveness. Methods: A prospective multicenter multiple interrupted time series (MITs) design is being used. In this design, 10 participating hospitals will be observed for a period of eighteen months, while they ‑stepwise‑ will transit from care as usual to PSPs and PAPs. The PSP contains decisions on the surveillance trajectory based on individual risks and needs, assessed with the ‘Breast Cancer Surveillance Decision Aid’ including the INFLUENCE prediction tool. The PAP contains decisions on the aftercare trajectory based on individual needs and preferences and available care resources, which decision‑making is supported by a patient decision aid. Patients are non‑metastasized female primary breast cancer patients (N= 1040) who are curatively treated and start follow‑up care. Patient reported outcomes will be measured at five points in time during two years of follow‑up care (starting about one year after treatment and every six months thereafter). In addition, data on diagnostics and hospital visits from patients’ Electronical Health Records (EHR) will be gathered. Primary outcomes are patient‑reported cancer worry (Cancer Worry Scale) and over‑all quality of life (as assessed with EQ‑VAS score). Secondary outcomes include health care costs and resource use, health‑related quality of life (as measured with EQ5D‑5L/SF‑12/EORTC‑QLQ‑C30), risk perception, shared decision‑making, patient satisfaction, societal participation, and cost‑effectiveness. Next, the uptake and appreciation of personalized plans and patients’ experiences of their decision‑making process will be evaluated. Discussion: This study will contribute to insight in the (cost‑)effectiveness of personalized follow‑up care and contributes to development of uniform evidence‑based guidelines, stimulating sustainable implementation of personalized surveillance and aftercare plans. Trial registration: Study sponsor: ZonMw. Retrospectively registered at ClinicalTrials.gov (2023), ID: NCT05975437.
Production processes can be made ‘smarter’ by exploiting the data streams that are generated by the machines that are used in production. In particular these data streams can be mined to build a model of the production process as it was really executed – as opposed to how it was envisioned. This model can subsequently be analyzed and stress-tested to explore possible causes of production prob-lems and to analyze what-if scenarios, without disrupting the production process itself. It has been shown that such models can successfully be used to diagnose possible causes of production problems, including scrap products and machine defects. Ideally, they can even be used to model and analyze production processes that have not been implemented yet, based on data from existing production pro-cesses and techniques from artificial intelligence that can predict how the new process is likely to be-have in practice in terms of data that its machines generate. This is especially important in mass cus-tomization processes, where the process to create each product may be unique, and can only feasibly be tested using model- and data-driven techniques like the one proposed in this project. Against this background, the goal of this project is to develop a method and toolkit for mining, mod-elling and analyzing production processes, using the time series data that is generated by machines, to: (i) analyze the performance of an existing production process; (ii) diagnose causes of production prob-lems; and (iii) certify that a new – not yet implemented – production process leads to high-quality products. The method is developed by researching and combining techniques from the area of Artificial Intelli-gence with techniques from Operations Research. In particular, it uses: process mining to relate time series data to production processes; queueing networks to determine likely paths through the produc-tion processes and detect anomalies that may be the cause of production problems; and generative adversarial networks to generate likely future production scenarios and sample scenarios of production problems for diagnostic purposes. The techniques will be evaluated and adapted in implementations at the partners from industry, using a design science approach. In particular, implementations of the method are made for: explaining production problems; explaining machine defects; and certifying the correct operation of new production processes.
The maritime transport industry is facing a series of challenges due to the phasing out of fossil fuels and the challenges from decarbonization. The proposal of proper alternatives is not a straightforward process. While the current generation of ship design software offers results, there is a clear missed potential in new software technologies like machine learning and data science. This leads to the question: how can we use modern computational technologies like data analysis and machine learning to enhance the ship design process, considering the tools from the wider industry and the industry’s readiness to embrace new technologies and solutions? The obbjective of this PD project is to bridge the critical gap between the maritime industry's pressing need for innovative solutions for a more agile Ship Design Process; and the current limitations in software tools and methodologies available via the implementation into Ship Design specific software of the new generation of computational technologies available, as big data science and machine learning.
In order to stay competitive and respond to the increasing demand for steady and predictable aircraft turnaround times, process optimization has been identified by Maintenance, Repair and Overhaul (MRO) SMEs in the aviation industry as their key element for innovation. Indeed, MRO SMEs have always been looking for options to organize their work as efficient as possible, which often resulted in applying lean business organization solutions. However, their aircraft maintenance processes stay characterized by unpredictable process times and material requirements. Lean business methodologies are unable to change this fact. This problem is often compensated by large buffers in terms of time, personnel and parts, leading to a relatively expensive and inefficient process. To tackle this problem of unpredictability, MRO SMEs want to explore the possibilities of data mining: the exploration and analysis of large quantities of their own historical maintenance data, with the meaning of discovering useful knowledge from seemingly unrelated data. Ideally, it will help predict failures in the maintenance process and thus better anticipate repair times and material requirements. With this, MRO SMEs face two challenges. First, the data they have available is often fragmented and non-transparent, while standardized data availability is a basic requirement for successful data analysis. Second, it is difficult to find meaningful patterns within these data sets because no operative system for data mining exists in the industry. This RAAK MKB project is initiated by the Aviation Academy of the Amsterdam University of Applied Sciences (Hogeschool van Amsterdan, hereinafter: HvA), in direct cooperation with the industry, to help MRO SMEs improve their maintenance process. Its main aim is to develop new knowledge of - and a method for - data mining. To do so, the current state of data presence within MRO SMEs is explored, mapped, categorized, cleaned and prepared. This will result in readable data sets that have predictive value for key elements of the maintenance process. Secondly, analysis principles are developed to interpret this data. These principles are translated into an easy-to-use data mining (IT)tool, helping MRO SMEs to predict their maintenance requirements in terms of costs and time, allowing them to adapt their maintenance process accordingly. In several case studies these products are tested and further improved. This is a resubmission of an earlier proposal dated October 2015 (3rd round) entitled ‘Data mining for MRO process optimization’ (number 2015-03-23M). We believe the merits of the proposal are substantial, and sufficient to be awarded a grant. The text of this submission is essentially unchanged from the previous proposal. Where text has been added – for clarification – this has been marked in yellow. Almost all of these new text parts are taken from our rebuttal (hoor en wederhoor), submitted in January 2016.