Since the European Union wants to reduce the oil dependence of the transportation system, the uptake of alternative vehicle technologies are stimulated in the member states. In the Netherlands, stimulation is already largely implemented in the form of a comprehensive charging infrastructure. This infrastructure is widely used by the electric vehicle drivers and thus there may occur a form of competition for the charging points. In this paper we address this problem by predicting the short-term availability of charging points at a given location and time by using the historical charging data in a space-time series model. The model shows better accuracy with respect to a naive method for short term predictions up to one day. This will allow charging point operators to provide customers with the service of looking up estimated charging point availability in the nearby future.
DOCUMENT
Developers of charging infrastructure, be it public or private parties, are highly dependent on accurate utilization data in order to make informed decisions where and when to expand charging points. The Amsterdam The Amsterdam University of Applied Sciences in close cooperation with the municipalities of Amsterdam, Rotterdam, The Hague, Utrecht and the metropolitan region of Amsterdam developed both the back- and front-end of a decision support tool. This paper describes the design of the decision support tool and its DataWareHouse architecture. The back-end is based on a monthly update of charging data with Charge point Detail Records and Meter Values enriched with location specific data. The design of the front-end is based on Key Performance Indicators used in the decision process for charging infrastructure roll-out. Implementing this design and DataWareHouse architecture allows all kinds of EV related companies and cities to start monitoring their charging infrastructure. It provides an overview of how the most important KPIs are being monitored and represented in the decision support tool based on regular interviews and decision processes followed by four major cities and a metropolitan region in the Netherlands.
DOCUMENT
On the eve of the large-scale introduction of electric vehicles, policy makers have to decide on how to organise a significant growth in charging infrastructure to meet demand. There is uncertainty about which charging deployment tactic to follow. The main issue is how many of charging stations, of which type, should be installed and where. Early roll-out has been successful in many places, but knowledge on how to plan a large-scale charging network in urban areas is missing. Little is known about return to scale effects, reciprocal effects of charger availability on sales, and the impact of fast charging or more clustered charging hubs on charging preferences of EV owners. This paper explores the effects of various roll-out strategies for charging infrastructure that facilitate the large-scale introduction of EVs, using agent-based simulation. In contrast to previously proposed models, our model is rooted in empirically observed charging patterns from EVs instead of travel patterns of fossil fuelled cars. In addition, the simulation incorporates different user types (inhabitants, visitors, taxis and shared vehicles) to model the diversity of charging behaviours in an urban environment. Different scenarios are explored along the lines of the type of charging infrastructure (level 2, clustered level 2, fast charging) and the intensity of rollout (EV to charging point ratio). The simulation predicts both the success rate of charging attempts and the additional discomfort when searching for a charging station. Results suggest that return to scale and reciprocal effects in charging infrastructure are considerable, resulting in a lower EV to charging station ratio on the longer term.
DOCUMENT
There is increasing interest for the use of Virtual Reality (VR) in the field of sustainable transportation and urban development. Even though much has been said about the opportunities of using VR technology to enhance design and involve stakeholders in the process, implementations of VR technology are still limited. To bridge this gap, the urban intelligence team of NHTV Breda University of Applied Sciences developed CycleSPEX, a Virtual Reality (VR) simulator for cycling. CycleSpex enables researchers, planners and policy makers to shape a variety of scenarios around knowledge- and design questions and test their impact on users experiences and behaviour, in this case (potential) cyclists. The impact of infrastructure enhancements as well as changes in the surrounding built environment can be tested, analysed an evaluated. The main advantage for planners and policy makers is that the VR environment enables them to test scenarios ex-ante in a safe and controlled setting.“The key to a smart, healthy and safe urban environment lies in engaging mobility. Healthy cities are often characterized by high quality facilities for the active modes. But what contributes to a pleasant cycling experience? CycleSPEX helps us to understand the relations between cyclists on the move and (designed) urban environments”
In the Dutch National Environmental Vision the societal challenge of building sustainable 1 million homes by 2035, is associated to the energy and mobility transitions. New living and working locations are mapped on existing urbanized sites - mainly at catchment areas of public transportation (PT) nodes or stations – and connected to good accessibility. The stations of the future become hubs, where you can transfer from one mode of transport to another, and find places to meet up, work, exercise and eat. In order to reduce congestions and CO2 emissions, the Ministry of Infrastructure and Water Management has developed a vision on the future of public transport in PT 2040 based on Door-to-Door solutions. This requires the development of new city policies in the field of bicycle and car parking, shared mobility systems, environmental zones (car-free) and public space design. The hubs are important enablers of the mobility transition (promoting the transition from car to PT or bike, in combination with shared mobility to be prepared for a post-pandemic phase). Most stations do not meet the new mobility requirements and face problems such as lack of space for bicycle parking and shared modes, as well as lack of public space. How to improve mobility transition, make it seamless and create public space for more inviting and attractive stations for people and with less cars? WALK-IN will develop a toolkit for designers which provide generic guidelines and spatial solutions for the integration of sustainable mobility in public space at PT nodes. The toolkit is developed between and with academia, public and private partners. The project aims to develop a new network and an EU funding proposal on Energy transition and Sustainability or for the forthcoming Driving Urban Transitions program from the Joint Program Initiative Urban Europe.