Although urban agriculture as a way to come to sustainable urban food systems can be questioned and we have to be aware not falling into a ‘local trap’ regarding its benefits (Born & Purcell, 2006), initiatives for urban agriculture emerge all over the world. Some of these primarily focus on achieving social and educational goals while others try to become an (high tech) alternative to existing food supply chains. Whichever the goals of urban agriculture, in practice many of these initiatives have difficulties in their (logistics) operations. Research on urban agriculture and local‐for‐local food supply chains mainly focuses on environmental and economic benefits, alternative production techniques, short food supply chains (logistics infrastructure) or socio‐economic benefits of urban agriculture. So far, the alignment of urban agriculture goals with the chosen logistics concept – which includes more aspects than only infrastructure – has not gained much attention. This paper tries to fill this gap through an exploration of urban agriculture projects – both low and high tech – from around the world by using the integrated logistics concept (Van Goor et al., 2003). The main question to be answered in this paper is: to what extend can the integrated logistics concept contribute to understanding logistics drivers and barriers of urban agriculture projects? To answer this question, different urban agriculture projects were studied through information on their websites and an internet based questionnaire with key players in these projects. Our exploration shows that the ILC is a useful tool for determining logistics drivers and barriers and that there is much potential in using this concept when planning for successful urban agriculture projects.
MULTIFILE
from the article: Abstract Based on a review of recent literature, this paper addresses the question of how urban planners can steer urban environmental quality, given the fact that it is multidimensional in character, is assessed largely in subjective terms and varies across time. The paper explores three questions that are at the core of planning and designing cities: ‘quality of what?’, ‘quality for whom?’ and ‘quality at what time?’ and illustrates the dilemmas that urban planners face in answering these questions. The three questions provide a novel framework that offers urban planners perspectives for action in finding their way out of the dilemmas identified. Rather than further detailing the exact nature of urban quality, these perspectives call for an approach to urban planning that is integrated, participative and adaptive. ; ; sustainable urban development; trade-offs; quality dimensions
DOCUMENT
Climate change is increasing the challenges for water management worldwide. Extreme weather conditions, such as droughts and heavy rainfall, are increasingly limiting the availability of water, especially for agriculture. Nature-Based Solutions (NBS) offer potential solutions. They help to collect and infiltrate rainwater and thus play an important role in climate adaptation.Green infrastructure, such as rain gardens (sunken plant beds) and wadis (sunken grass fields for temporary storage of rainwater), help to restore the urban water balance. They reduce rainwater runoff, stabilize groundwater levels and solve problems with soil moisture and temperature. Despite these advantages, there is still much ignorance in practice about the possibilities of NBS. To remedy this, freely accessible knowledge modules are being developed that can help governments and future employees to better understand the application of these solutions. This research, called GINA (Green Infrastructure in Urban Areas), aims to create more sustainable and climate-resilient cities by developing and sharing knowledge about NBS, and supports local governments and students in effectively deploying these green infrastructures.
The Netherlands must build one million homes and retrofit eight million buildings by 2030, while halving CO₂ emissions and achieving a circular economy by 2050. This demands a shift from high-carbon materials like concrete—responsible for 8% of global CO₂ emissions—and imported timber, which inflates supply-chain emissions. Mycelium offers a regenerative, biodegradable alternative with carbon-sequestration potential and minimal energy input. Though typically used for insulation, it shows structural promise—achieving compressive strengths of 5.7 MPa and thermal conductivities of 0.03–0.05 W/(m·K). Hemp and other lignocellulosic agricultural byproducts are commonly used as substrates for mycelium composites due to their fibrous structure and availability. However, hemp (for e.g.) requires 300–500 mm of water per cycle and centralized processing, limiting its circularity in urban or resource-scarce areas. Aligned with the CLICKNL Design Power Agenda, this project explores material-driven design innovation through a load-bearing mycelium-based architectural product system, advancing circular, locally embedded construction. To reduce environmental impact, we will develop composites using regional bio-waste—viz. alienated vegetation, food waste, agriculture and port byproducts—eliminating the need for water-intensive hemp cultivation. Edible fungi like Pleurotus ostreatus (oyster mushroom) will enable dual-function systems that yield food and building material. Design is key for moving beyond a singular block to a full product system: a cluster of modular units emphasizing geometry, interconnectivity, and compatibility with other building layers. Aesthetic variation (dimension, color, texture) supports adaptable, expressive architecture. We will further assess lifecycle performance, end-of-(service)-life scenarios, and on-site fabrication potential. A 1:1 prototype at The Green Village will serve as a demonstrator, accelerating stakeholder engagement and upscaling. By contributing to the KIA mission on Social Desirability, we aim to shift paradigms—reimagining how we build, live, grow, and connect through circular architecture.