Limited data is available on the size of urban goods movement and its impact on numerous aspects with respect to livability such as emissions and spatial impact. The latter becomes more important in densifying cities. This makes it challenging to implement effective measures that aim to reduce the negative impact of urban good movement and to monitor their impact. Furthermore, urban goods movement is diverse and because of this a tailored approach is required to take effective measures. Minimizing the negative impact of a heavy truck in construction logistics requires a different approach than a parcel delivery van. Partly due to a lack of accurate data, this diversity is often not considered when taking measures. This study describes an approach how to use available data on urban traffic, and how to enrich these with other sources, which is used to gain insight into the decomposition (number of trips and kilometers per segment and vehicle type). The usefulness of having this insight is shown for different applications by two case studies: one to estimate the effect of a zero-emission zone in the city of Utrecht and another to estimate the logistics requirements in a car-free area development.
MULTIFILE
City logistics is one of the causes of today's road congestion in our cities, but at the same time its efficiency is affected by the traffic problems. The driving behaviour and mission strategies used by vans and lorries operating in urban areas usually does not exploit modern infomobility solutions. CityLog, a project co-funded by the European Commission within the 7th Framework Programme, aims at increasing the sustainability and the efficiency of urban goods deliveries through an adaptive and integrated mission management and by innovative vehicle features. More particularly, CityLog integrates a wide range of logistics-oriented infomobility services that include an optimized pre-trip planner, a new type of navigation system based on enhanced maps and a last mile parcel tracking service to avoid unsuccessful deliveries. © 2011 IEEE.
LINK
The transition from diesel-driven urban freight transport towards more electric urban freight transport turns out to be challenging in practice. A major concern for transport operators is how to find a reliable charging strategy for a larger electric vehicle fleet that provides flexibility based on different daily mission profiles within that fleet, while also minimizing costs. This contribution assesses the trade-off between a large battery pack and opportunity charging with regard to costs and operational constraints. Based on a case study with 39 electric freight vehicles that have been used by a parcel delivery company and a courier company in daily operations for over a year, various scenarios have been analyzed by means of a TCO analysis. Although a large battery allows for more flexibility in planning, opportunity charging can provide a feasible alternative, especially in the case of varying mission profiles. Additional personnel costs during opportunity charging can be avoided as much as possible by a well-integrated charging strategy, which can be realized by a reservation system that minimizes the risk of occupied charging stations and a dense network of charging stations.
MULTIFILE
Lastmile.info contributes to livable urban environments and efficient deliveries. LastMile.info is set to become the essential platform for finding and monitoring all the necessary information so that you can optimally plan and execute the final stage of the route during store deliveries:> Clear overview of regulations (such as restrictions and time windows)> Shorter waiting times: reduced financial and environmental burden> Greater driver satisfaction thanks to insight into delivery locations
The SPRONG group, originating from the CoE KennisDC Logistiek, focuses on 'Low Impact in Lastmile Logistics' (LILS). The LILS group conducts practical research with local living labs and learning communities. There is potential for more collaboration and synergy for nationwide scaling of innovations, which is currently underutilized. LILS aims to make urban logistics more sustainable and facilitate necessary societal transitions. This involves expanding the monodisciplinary and regional scope of CoE KennisDC Logistiek to a multidisciplinary and supra-regional approach, incorporating expertise in spatial planning, mobility, data, circularity, AI, behavior, and energy. The research themes are:- Solutions in scarce space aiming for zero impact;- Influencing behavior of purchasers, recipients, and consumers;- Opportunities through digitalization.LILS seeks to increase its impact through research and education beyond its regions. Collaboration between BUas, HAN, HR, and HvA creates more critical mass. LILS activities are structured around four pillars:- Developing a joint research and innovation program in a roadmap;- Further integrating various knowledge domains on the research themes;- Deepening methodological approaches, enhancing collaboration between universities and partners in projects, and innovating education (LILS knowledge hub);- Establishing an organizational excellence program to improve research professionalism and quality.These pillars form the basis for initiating and executing challenging, externally funded multidisciplinary research projects. LILS is well-positioned in regions where innovations are implemented and has a strong national and international network and proven research experience.Societal issue:Last-mile logistics is crucial due to its visibility, small deliveries, high costs, and significant impact on emissions, traffic safety, and labor hours. Lastmile activities are predicted to grow a 20% growth in the next decade. Key drivers for change include climate agreements and energy transitions, urban planning focusing on livability, and evolving retail landscapes and consumer behavior. Solutions involve integrating logistics with spatial planning, influencing purchasing behavior, and leveraging digitalization for better data integration and communication. Digital twins and the Physical Internet concept can enhance efficiency through open systems, data sharing, asset sharing, standardization, collaboration protocols, and modular load units.Key partners: Buas, HR, HAN, HvAPartners: TNO, TU Delft, Gemeente Rotterdam, Hoger Onderwijs Drechtsteden, Significance, Metropolitan Hub System, evofenedex, Provincie Gelderland, Duurzaam Bereikbaar Heijendaal, Gemeente Alphen aan den Rijn, Radboud Universiteit, I&W - DMI, DHL, TLN, Noorderpoort, Fabrications, VUB, Smartwayz, RUG, Groene Metropoolregio.