Limited data is available on the size of urban goods movement and its impact on numerous aspects with respect to livability such as emissions and spatial impact. The latter becomes more important in densifying cities. This makes it challenging to implement effective measures that aim to reduce the negative impact of urban good movement and to monitor their impact. Furthermore, urban goods movement is diverse and because of this a tailored approach is required to take effective measures. Minimizing the negative impact of a heavy truck in construction logistics requires a different approach than a parcel delivery van. Partly due to a lack of accurate data, this diversity is often not considered when taking measures. This study describes an approach how to use available data on urban traffic, and how to enrich these with other sources, which is used to gain insight into the decomposition (number of trips and kilometers per segment and vehicle type). The usefulness of having this insight is shown for different applications by two case studies: one to estimate the effect of a zero-emission zone in the city of Utrecht and another to estimate the logistics requirements in a car-free area development.
MULTIFILE
The transition from diesel-driven urban freight transport towards more electric urban freight transport turns out to be challenging in practice. A major concern for transport operators is how to find a reliable charging strategy for a larger electric vehicle fleet that provides flexibility based on different daily mission profiles within that fleet, while also minimizing costs. This contribution assesses the trade-off between a large battery pack and opportunity charging with regard to costs and operational constraints. Based on a case study with 39 electric freight vehicles that have been used by a parcel delivery company and a courier company in daily operations for over a year, various scenarios have been analyzed by means of a TCO analysis. Although a large battery allows for more flexibility in planning, opportunity charging can provide a feasible alternative, especially in the case of varying mission profiles. Additional personnel costs during opportunity charging can be avoided as much as possible by a well-integrated charging strategy, which can be realized by a reservation system that minimizes the risk of occupied charging stations and a dense network of charging stations.
MULTIFILE
Background:Following the onset of the COVID-19 pandemic, telerehabilitation (TR) has been expanding to address the challenges and risks of in-person delivery. It is likely that a level of TR delivery will continue after the pandemic because of its advantages, such as reducing geographical barriers to service. Many pandemic-related TR initiatives were put in place quickly. Therefore, we have little understanding of current TR delivery, barriers and facilitators, and how therapists anticipate integrating TR into current practice. Knowing this information will allow the incorporation of competencies specifically related to the use and provision of TR into professional profiles and entry-to-practice education, thereby promoting high-quality TR care.Objective:This study aimed to obtain a descriptive overview of current TR practice among rehabilitation therapists in Canada and the Netherlands and identify perceived barriers to and facilitators of practice.Methods:A web-based cross-sectional survey was conducted with occupational, physical, and respiratory therapists and dietitians in Canada (in French and English) and the Netherlands (in Dutch and English) between November 2021 and March 2022. Recruitment was conducted through advertisements on social media platforms and email invitations facilitated by regulatory and professional bodies. The survey included demographic and practice setting information; whether respondents delivered TR, and if so, components of delivery; confidence and satisfaction ratings with delivery; and barriers to and facilitators of use. TR satisfaction and uptake were measured using the Telehealth Usability Questionnaire and modified Technology Acceptance Model. Data were first summarized descriptively, and then, comparisons were conducted between professions.Results:Overall, 723 survey responses were received, mostly from Canada (n=666, 92.1%) and occupational therapists (n=434, 60%). Only 28.1% (203/723) reported receiving specific training in TR, with 1.2% (9/723) indicating that it was part of their professional education. Approximately 19.5% (139/712) reported not using TR at all, whereas most participants (366/712, 51.4%) had been using this approach for 1 to 2 years. Services delivered were primarily teleconsultation and teletreatment with individuals. Respondents offering TR were moderately satisfied with their service delivery and found it to be effective; 90.1% (498/553) indicated that they were likely to continue offering TR after the pandemic. Technology access, confidence, and setup were rated the highest as facilitators, whereas technology issues and the clinical need for physical contact were the most common barriers.Conclusions:Professional practice and experience with TR were similar in both countries, suggesting the potential for common strategic approaches. The high prevalence of current practice and strong indicators of TR uptake suggest that therapists are likely to continue TR delivery after the pandemic; however, most therapists (461/712, 64.7%) felt ill prepared for practice, and the need to target TR competencies during professional and postprofessional education is critical. Future studies should explore best practice for preparatory and continuing education.
DOCUMENT
DISCO aims at fast-tracking upscaling to new generation of urban logistics and smart planning unblocking the transition to decarbonised and digital cities, delivering innovative frameworks and tools, Physical Internet (PI) inspired. To this scope, DISCO will deploy and demonstrate innovative and inclusive urban logistics and planning solutions for dynamic space re-allocation integrating urban freight at local level, within efficiently operated network-of-networks (PI) where the nodes and infrastructure are fixed and mobile based on throughput demands. Solutions are co-designed with the urban logistics community – e.g., cities, logistics service providers, retailers, real estate/public and private infrastructure owners, fleet owners, transport operators, research community, civil society - all together moving a paradigm change from sprawl to data driven, zero-emission and nearby-delivery-based models.
Supermarkets are essential urban household amenities, providing daily products, and for their social role in communities. Contrary to many other countries, including nearby ones, the Netherlands have a balanced distribution of supermarkets across villages and urban neighbourhoods. However, spatial supermarket patterns, are subject to influential developments. First, due to economies of scale, there is a tendency for supermarkets to increase their catchment areas and to disappear from peripheral villages. Second, supermarkets are now mainly located in residential areas, although the urban periphery appears to be attractive for the retail sector, perhaps including the rise of hypermarkets. Third, today, online grocery shopping is still lagging far behind on other online shopping products, but a breaks through will dilute population support for in-store supermarkets and can lead to dramatic ‘game changer’ shifts with major spatial and social effects. These three important trends will reinforce each other. Consequences are of natural community meeting places at the expense of social cohesion; reduced accessibility for daily products, leading to more travel, often by car; increasing delivery flows; real estate vacancies, and increasing suburban demand increase for retail and logistics. Expected changes in supermarket patterns require understanding, but academic literature on OGS is still scarce, and does hardly address household behaviour in changing spatial constellations. We develop likely spatial supermarket patterns, and model the consequences for travel demand, social cohesion and real estate demand, as well as the distribution between online and in-store grocery shopping, by developing a stated preference experiment, among Dutch households.
Urban open space has a huge impact on human health, well-being and urban ecosystems. One of the open spaces where the environmental and ecological challenges of cities manifest the most is the urban riverfront, often characterised by fragmented land use, lack of accessibility, heavy riverside vehicular traffic, and extreme degradation of river hydrology and ecology. More often than not, the current spatial design of the riverfront hinders rather than supports the delivery of ecosystem services and, in consequence, its potential to improve the health and well-being of urban inhabitants is diminished. Hence, the design of riverside open spaces is crucial. Urban and landscape design in those spaces requires instruments that can aid designers, planners, decision-makers and stakeholders in devising spatial interventions that integrate complex environmental and ecological goals in high quality public space design. By recognising the multiple environmental and ecological benefits of green space and water in the city, the project “I surf” applies a set of four design instruments, namely the Connector, the Sponge, the Integrator, and the Scaler. I surf is a three-phased project that tests, validates and updates these instruments through a design-driven research methodology involving two design workshops and expert meetings addressing three different riverside urban spaces in Amsterdam: in the Ij waterfront, along River Amstel, and on a site located on the canal network. The project concludes with an updated and transferrable instrument set available for urban and landscape design applications in Amsterdam and in other Dutch cities crossed by rivers.