Distribution structures, as studied in this paper, involve the spatial layout of the freight transport and storage system used to move goods between production and consumption locations. Decisions on this layout are important to companies as they allow them to balance customer service levels and logistics costs. Until now there has been very little descriptive research into the factors that drive decisions about these structures. Moreover, the literature on the topic is scattered across various research streams. In this paper we review and consolidate this literature, with the aim to arrive at a comprehensive list of factors. Three relevant research streams were identified: Supply Chain Management (SCM), Transportation and Geography. The SCM and Transportation literature mostly focus on distribution structure including distribution centre (DC) location selection from a viewpoint of service level and logistics costs factors. The Geography literature focuses on spatial DC location decisions and resulting patterns mostly explained by location factors such as labour and land availability. Our review indicates that the main factors that drive decision-making are “demand level”, “service level”, “product characteristics”, “logistics costs”, “labour and land”, “accessibility” and “contextual factors”. The main trade-off influencing distribution structure selection is “service level” versus “logistics costs”. Together, the research streams provide a rich picture of the factors that drive distribution structure including DC location selection. We conclude with a framework that shows the relative position of these factors. Future work can focus on completing the framework by detailing out the sub factors and empirically testing the direction and strength of relationships. Cooperation between the three research streams will be useful to further extend and operationalize the framework.
Nowadays, urban freight policies often focus on restricting of urban freight transport without taking into account transport efficiency and sustainability issues. Time window regulations, for example, are commonplace in urban environments to increase attractiveness and reduce the negative impacts of urban distribution. However, these restrictions also lead to environmental pollution, increased costs and congestion. In industry, revenue management is the practice of managing demand in a manner that increases profitability. The key idea is customizing the product offering to exploit the market's heterogeneity. In this chapter we examine demand management and identify possible contributions from revenue management to the urban freight transport setting. Moreover, we point out the implications of more customized time window policies for the different stakeholders. © 2008 Nova Science Publishers, Inc. All rights reserved.
LINK
The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the liveability of cities. Small electric freight vehicles and cargo bikes can offer a solution, as they take less space, can manoeuvre easily and free from polluting emissions. Within the two-year LEVV-LOGIC project, (2016-2018) the use of light electric freight vehicles (LEFVs) for city logistics is explored. The project combines expertise on logistics, vehicle design, charging infrastructure and business modelling to find the optimal concept. This paper presents guidelines for the design of LEFV based on the standardized rolling container (length 800 mm, width 640 mm, height 1600 mm) and for the charging infrastructure.