Urban construction logistics has a big impact on cities. The topic of this paper is governance strategies for realising more sustainable urban construction logistics. Although not much research has been done in the field of governance of construction logistics, several authors have stressed the fragmented nature of the construction industry and the importance of collaboration in urban construction logistics as issues. A literature review was done to identify the barriers in collaboration. Based on these barriers the research objective was to determine which drivers for collaborative governance are needed to improve urban construction logistics. The methods for data collection were semi-structured interviews and a focus group. The collaborative governance model is applied as a strategy to overcome the barriers in collaboration and governance identified. Key findings are both formal and informal barriers hinder the governance of construction logistics. Based on a collaborative governance model we identified four for improving collaborative governance.
DOCUMENT
A large share of urban freight in cities is related to construction works. Construction is required to create attractive, sustainable and economically viable cities. When activities at and around construction sites are not managed effectively, they can have a negative impact on the cities liveability. Construction companies implementing logistics concepts show a reduction of logistic costs, less congestion around the sites and improved productivity and safety. The client initially sets the ‘ground rules’ for construction in the tendering process. This paper explores how tendering for construction projects can support sustainable urban construction logistics. We explore the potential for tendering construction projects, by both public and private clients, for sustainable urban construction logistics and we present a conceptual framework for specifying ‘logistics quality’ as a quality criterion for EMAT (Economically Most Advantageous Tender). Our exploration results in questions for further research in tendering for sustainable urban construction logistics.
DOCUMENT
MULTIFILE
Cities all over the world are rethinking their mobility policies in light of environmental and quality of life objectives. As space is one of cities’ scarcest resources, mobility’s spatial footprint is increasingly scrutinized as externality to mitigate. Similar to passenger transport, goods transport is envisioned to shift towards efficient and zero emission mobilities. To achieve an urban logistics system that eliminates inefficiencies and fossil fuels, the logistics sector requires space to unload, cross-dock, consolidate and stock goods closer to their destinations. Such a ‘proximity logistics’ is however at odds with ‘logistics sprawl’, the historic outward migration pattern of logistics facilities. With policies and planning, cities can support the (re)integration of logistics facilities in urban areas to facilitate and enable the shift to an efficient urban logistics system. Logistics still being a largely neglected policy subject in many cities, knowledge on how to approach this (re)integration is hardly available. Therefore, we compare two pioneering cities: Rotterdam and Paris. Both cities have an established track record in advancing urban logistics policies and are spearheading the practice of planning for logistics. Based on interviews and policy analyses, we develop best practices on how to address the integration of urban logistics facilities for cities.
DOCUMENT
from the article: "Abstract The way in which construction logistics is organised has considerable impact on production flow, transportation efficiency, greenhouse gas emissions and congestion, particularly in urban areas such as city centres. In cities such as London and Amsterdam municipalities have issued new legislation and stricter conditions for vehicles to be able to access cities and city centres in particular. Considerate clients, public as well private, have started developing tender policies to encourage contractors to reduce the environmental impact of construction projects. This paper reports on an ongoing research project applying and assessing developments in the field of construction logistics in the Netherlands. The cases include contractors and third party logistics providers applying consolidation centres and dedicated software solutions to increase transportation efficiency. The case show various results of JIT logistics management applied to urban construction projects leading to higher transportation efficiencies, and reduced environmental impact and increased production efficiency on site. The data collections included to-site en on-site observations, measurement and interviews. The research has shown considerable reductions of vehicles to deliver goods and to transport workers to site. In addition the research has shown increased production flow and less waste such as inventory, waiting and unnecessary motion on site."
DOCUMENT
Limited data is available on the size of urban goods movement and its impact on numerous aspects with respect to livability such as emissions and spatial impact. The latter becomes more important in densifying cities. This makes it challenging to implement effective measures that aim to reduce the negative impact of urban good movement and to monitor their impact. Furthermore, urban goods movement is diverse and because of this a tailored approach is required to take effective measures. Minimizing the negative impact of a heavy truck in construction logistics requires a different approach than a parcel delivery van. Partly due to a lack of accurate data, this diversity is often not considered when taking measures. This study describes an approach how to use available data on urban traffic, and how to enrich these with other sources, which is used to gain insight into the decomposition (number of trips and kilometers per segment and vehicle type). The usefulness of having this insight is shown for different applications by two case studies: one to estimate the effect of a zero-emission zone in the city of Utrecht and another to estimate the logistics requirements in a car-free area development.
MULTIFILE
Urban logistics is vital to keep the urban fabric running, but affects liveability while operators also have to deal with shrinking space in which they have to conduct operations. Despite this, there is primarily a lot of focus on decarbonising logistics as well as on logistics concepts to improve the efficiency of urban logistics going into urban areas. In this study we address the spatial footprint of logistics and possibilities to reduce this on a neighbuorhood level. We develop a typology with different archetype neighbourhoods in which we estimate the logistics footprint per area with a decomposition in different logistics segments and number of vehicles towards the year 2035. Based upon that we propose interventions for stakeholders to jointly reduce the negative impact. This study sheds more light on the importance of area.
DOCUMENT
Although urban agriculture as a way to come to sustainable urban food systems can be questioned and we have to be aware not falling into a ‘local trap’ regarding its benefits (Born & Purcell, 2006), initiatives for urban agriculture emerge all over the world. Some of these primarily focus on achieving social and educational goals while others try to become an (high tech) alternative to existing food supply chains. Whichever the goals of urban agriculture, in practice many of these initiatives have difficulties in their (logistics) operations. Research on urban agriculture and local‐for‐local food supply chains mainly focuses on environmental and economic benefits, alternative production techniques, short food supply chains (logistics infrastructure) or socio‐economic benefits of urban agriculture. So far, the alignment of urban agriculture goals with the chosen logistics concept – which includes more aspects than only infrastructure – has not gained much attention. This paper tries to fill this gap through an exploration of urban agriculture projects – both low and high tech – from around the world by using the integrated logistics concept (Van Goor et al., 2003). The main question to be answered in this paper is: to what extend can the integrated logistics concept contribute to understanding logistics drivers and barriers of urban agriculture projects? To answer this question, different urban agriculture projects were studied through information on their websites and an internet based questionnaire with key players in these projects. Our exploration shows that the ILC is a useful tool for determining logistics drivers and barriers and that there is much potential in using this concept when planning for successful urban agriculture projects.
MULTIFILE
This paper presents challenges in city logistics for circular supply chains of e-e-waste. Efficient e-waste management is one of the strategies to save materials, critical minerals, and precious metals. E-waste collection and recycling have gained attention recently due to lower collection and recycling rates. However, implementing circular urban supply chains is a significant economic transformation that can only work if coordination decisions are solved between the actors involved. On the one hand, this requires the implementation of efficient urban collection technologies, where waste collection companies collaborate with manufacturers, urban waste treatment specialists, and city logistics service providers supported by digital solutions for visibility and planning. On the other hand, it also requires implementing urban and regional ecosystems connected by innovative CO2-neutral circular city logistics systems. These systems must smoothly and sustainably manage the urban and regional flow of resources and data, often at a large scale and with interfaces between industrial processes, private, and public actors. This paper presents future research questions from a city logistics perspective based on a European project aimed at developing a blueprint for systemic solutions for the circularity of plastics from applications of rigid PU foams used as insulation material in refrigerators.
MULTIFILE
‘Efficiënter en groener’, dat vat samen wat moderne stadslogistiek kan brengen. De realisatie van deze voordelen is niet altijd eenvoudig gebleken. Stadslogistiek wordt een succes als verzenders, ontvangers, consultants en stadslogistieke dienstverleners elk vanuit hun eigen rol, stappen gaan zetten. Deze stappen moeten niet vrijblijvend zijn en bij voorkeur ook nog eens onomkeerbaar. In deze bluepaper presenteert de expertgroep Next-level City Logistics oplossingsrichtingen voor de belangrijkste showstoppers op het gebied van stadslogistiek. Geschreven door expertgroep Shopping Tomorrow (Walther Ploos van Amstel is lid)
DOCUMENT