Background: During the process of decision-making for long-term care, clients are often dependent on informal support and available information about quality ratings of care services. However, clients do not take ratings into account when considering preferred care, and need assistance to understand their preferences. A tool to elicit preferences for long-term care could be beneficial. Therefore, the aim of this qualitative descriptive study is to understand the user requirements and develop a web-based preference elicitation tool for clients in need of longterm care. Methods: We applied a user-centred design in which end-users influence the development of the tool. The included end-users were clients, relatives, and healthcare professionals. Data collection took place between November 2017 and March 2018 by means of meetings with the development team consisting of four users, walkthrough interviews with 21 individual users, video-audio recordings, field notes, and observations during the use of the tool. Data were collected during three phases of iteration: Look and feel, Navigation, and Content. A deductive and inductive content analysis approach was used for data analysis. Results: The layout was considered accessible and easy during the Look and feel phase, and users asked for neutral images. Users found navigation easy, and expressed the need for concise and shorter text blocks. Users reached consensus about the categories of preferences, wished to adjust the content with propositions about well-being, and discussed linguistic difficulties. Conclusion: By incorporating the requirements of end-users, the user-centred design proved to be useful in progressing from the prototype to the finalized tool ‘What matters to me’. This tool may assist the elicitation of client’s preferences in their search for long-term care.
Vehicle2Grid is a new charging strategy that allows for charging and discharging of Plug-In Hybrid Electric Vehicles (PHEV) and Full Electric Vehicles (FEV). The discharged energy can be supplied back to the (local) energy grid, enabling for grid alleviation, but can also be supplied back to the household in the case of a Vehicle2Home connection. Vehicle2Grid is an innovative and complex systems that requires adequate input from users if the local energy grid is to fully benefit from the discharged energy. Users have to be willing for the State of Charge of their EV to be adjusted in order for the Vehicle2Grid system to actually discharge energy from the EV. However, limiting the potential range of an EV can act as a barrier for the use of a Vehicle2Grid system, as discharging might cause uncertainty and possible range anxiety. Charging and discharging an EV through the use of Vehicle2Grid is therefore expected to change user’s routines and interactions with the charging system. Yet few Vehicle2Grid studies have focused on the requirements of a Vehicle2Grid system from the perspective of the user. This paper discussed several incentives and design guidelines that focus on the interaction users have with a Vehicle2Grid system in order to optimize user engagement with the system and integrate user preferences into the complex charging strategy. Results were obtained through a brief literature study, from a focus group as well as from two Vehicle2Grid field pilots. At the end of the paper, recommendations for further research are given.
BACKGROUND: Non-use of and dissatisfaction with ankle foot orthoses (AFOs) occurs frequently. The objective of this study is to gain insight in the conversation during the intake and examination phase, from the clients’ perspective, at two levels: 1) the attention for the activities and the context in which these activities take place, and 2) the quality of the conversation. METHODOLOGY: Semi-structured interviews were performed with 12 AFO users within a two-week period following intake and examination. In these interviews, and subsequent data analysis, extra attention was paid to the needs and wishes of the user, the desired activities and the environments in which these activities take place. RESULTS AND CONCLUSION: Activities and environments were seldom inquired about or discussed during the intake and examination phase. Also, activities were not placed in the context of their specific environment. As a result, profundity lacks. Consequently, orthotists based their designs on a ‘reduced reality’ because important and valuable contextual information that might benefit prescription and design of assistive devices was missed. A model is presented for mapping user activities and user environments in a systematic way. The term ‘user practices’ is introduced to emphasise the concept of activities within a specific environment.
LINK
-Chatbots are being used at an increasing rate, for instance, for simple Q&A conversations, flight reservations, online shopping and news aggregation. However, users expect to be served as effective and reliable as they were with human-based systems and are unforgiving once the system fails to understand them, engage them or show them human empathy. This problem is more prominent when the technology is used in domains such as health care, where empathy and the ability to give emotional support are most essential during interaction with the person. Empathy, however, is a unique human skill, and conversational agents such as chatbots cannot yet express empathy in nuanced ways to account for its complex nature and quality. This project focuses on designing emotionally supportive conversational agents within the mental health domain. We take a user-centered co-creation approach to focus on the mental health problems of sexual assault victims. This group is chosen specifically, because of the high rate of the sexual assault incidents and its lifetime destructive effects on the victim and the fact that although early intervention and treatment is necessary to prevent future mental health problems, these incidents largely go unreported due to the stigma attached to sexual assault. On the other hand, research shows that people feel more comfortable talking to chatbots about intimate topics since they feel no fear of judgment. We think an emotionally supportive and empathic chatbot specifically designed to encourage self-disclosure among sexual assault victims could help those who remain silent in fear of negative evaluation and empower them to process their experience better and take the necessary steps towards treatment early on.
The IMPULS-2020 project DIGIREAL (BUas, 2021) aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies. The pandemic has had a tremendous negative impact on BUas industrial sectors of research: Tourism, Leisure and Events, Hospitality and Facility, Built Environment and Logistics. Our partner industries are in great need of innovative responses to the crises. Data, AI combined with Interactive and Immersive Technologies (Games, VR/AR) can provide a partial solution, in line with the key-enabling technologies of the Smart Industry agenda. DIGIREAL builds upon our well-established expertise and capacity in entertainment and serious games and digital media (VR/AR). It furthermore strengthens our initial plans to venture into Data and Applied AI. Digital Realities offer great opportunities for sectoral industry research and innovation, such as experience measurement in Leisure and Hospitality, data-driven decision-making for (sustainable) tourism, geo-data simulations for Logistics and Digital Twins for Spatial Planning. Although BUas already has successful R&D projects in these areas, the synergy can and should significantly be improved. We propose a coherent one-year Impuls funded package to develop (in 2021): 1. A multi-year R&D program on Digital Realities, that leads to, 2. Strategic R&D proposals, in particular a SPRONG/sleuteltechnologie proposal; 3. Partnerships in the regional and national innovation ecosystem, in particular Mind Labs and Data Development Lab (DDL); 4. A shared Digital Realities Lab infrastructure, in particular hardware/software/peopleware for Augmented and Mixed Reality; 5. Leadership, support and operational capacity to achieve and support the above. The proposal presents a work program and management structure, with external partners in an advisory role.
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.