The methodology should be a uniform approach that also is flexible enough to accommodate all combinations that make up the different solutions in 6 OPs. For KPIs A and B this required the use of sub-KPIs to differentiate the effects of each (individual and combination of) implemented solutions and prevent double counting of results. This approach also helped to ensure that all 6 OPs use a common way and scope to calculate the various results. Consequently, this allowed the project to capture the results per OP and the total project in one ‘measurement results’ template. The template is used in both the individual OP reports and the ‘KPI Results: Baseline & Final results’ report where all results are accumulated; each instance providing a clear overview of what is achieved. This report outlines the details of the methodology used and applied. It is not just meant to provide a clarification of the results of the project, but is also meant to allow others who are embarking on adopting similar solutions for the purpose of CO2 reduction, becoming more energy autonomous or avoid grid stress or investments to learn about and possibly use the same methodology.
We studied 12 smart city projects in Amsterdam, and –among other things- analysed their upscaling potential and dynamics. Here are some of our findings:First, upscaling comes in various forms: rollout, expansion and replication. In roll-out, a technology or solution that was successfully tested and developed in the pilot project is commercialised/brought to the market (market roll-out), widely applied in an organisation (organisational roll-out), or rolled out across the city (city roll-out). Possibilities for rollout largely emerge from living-lab projects (such as Climate street and WeGo), where companies can test beta versions of new products/solutions. Expansion is the second type of upscaling. Here, the smart city pilot project is expanded by a) adding partners, b) extending the geographical area covered by the solution, or c) adding functionality. This type of upscaling applies to platform projects, for example smart cards for tourists, where the value of the solution grows with the number of participating organisations. Replication is the third and most problematic type of upscaling. Here, the solution that was developed in the pilot project is replicated elsewhere (another organisation, another part of the city, or another city). Replication can be done by the original pilot partnership but also by others, and the replication can be exact or by proxy. We found that the replication potential of projects is often limited because the project’s success is highly context-sensitive. Replication can also be complex because new contexts might often require the establishment of new partnerships. Possibilities for replication exist, though, at the level of working methods, specific technologies or tools, but variations among contexts should be taken into consideration. Second, upscaling should be considered from the start of the pilot project and not solely at the end. Ask the following questions: What kind of upscaling is envisioned? What parts of the project will have potential for upscaling, and what partners do we need to scale up the project as desired? Third, the scale-up stage is quite different from the pilot stage: it requires different people, competencies, organisational setups and funding mechanisms. Thus, pilot project must be well connected to the parent organisations, else it becomes a “sandbox” that will stay a sandbox. Finally, “scaling” is not a holy grail. There is nothing wrong when pilot projects fail, as long as the lessons are lessons learned for new projects, and shared with others. Cities should do more to facilitate learning between their smart city projects, to learn and innovate faster.
The Vulkan real estate site in Oslo is owned by Aspelin Ramm, and includes one of the largest parking garages used for EV charging in Europe. EV charging (both AC and DC) is managed for now predominately for costs reasons but also with relevance at further EV penetration level in this car parking location (mixed EV and ICE vehicles). This neighbourhood scale SEEV4-City operational pilot (OP) has 50 22 kW flexible AC chargers with two sockets each and two DC chargers of 50 kW with both ChaDeMo and CCS outlets. All EV chargers now have a smart control (SC) and Vehicle-to-Grid (V2G) functionality (though the latter may not be in place fully for DC chargers, as they may not be fully connected to the remote back-office system of the EV charging systems operator). A Lithium-ion Battery Energy Stationary Storage System (BESS) with a capacity of 50 kWh is pre-programmed to reduce the energy power peaks of the electric vehicle (EV) charging infrastructure and charges at other times from the central grid (which has a generation mix of 98% from hydro-electric power, and in the region covering Oslo also 1% from wind). The inverter used in the BESS is rated at 50 kW, and is also controlled to perform phase balancing of the 3-phase supply system.
Een duurzaam energiesysteem op wijkniveau: met Smart Solar Charging wordt lokaal opgewekte zonne-energie in (deel)auto’s opgeslagen via een slim en dynamisch systeem (Vehicle2Grid). Wij onderzoeken de wenselijkheid van deze dienst voor gebruikers.Doel We onderzoeken wat de beste ervaringen zijn van de gebruikers van het energiesysteem Smart Solar Charging. Een Smart Solar Charging-systeem werkt pas bij een (deel)autosysteem van minimaal honderd auto’s. Dit kan een goede oplossing zijn voor het mobiliteitsprobleem in de steden. Maar wat is het voordeel voor de gebruikers? Wat verandert er in hun leven en hoe reageren zij hierop? Waar zijn zij bang voor? Wat verlangen ze? Zoals hierboven genoemd zijn dit belangrijke aspecten om ervoor te zorgen dat het nieuwe systeem daadwerkelijk kan slagen. Hoe ziet de ervaringswereld van mogelijke betrokkenen eruit? Het antwoord op deze vraag zal worden meegenomen in de ontwikkeling van de diensten. Resultaten Dit onderzoek loopt. Na afloop vind je hier een samenvatting van de resultaten. Op de projectwebsite lees je meer over Smart Solar Charging Looptijd 01 april 2017 - 01 april 2021 Aanpak Het lectoraat Co-Design van Hogeschool Utrecht doet onderzoek naar optimale gebruikersinteracties van de beoogde diensten. In het Design Innovation model van Ideo zijn drie elementen die de basis voor innovatie zijn. Waar andere partijen in het project zich met name richten op de zakelijke en technische kanten van het verhaal, onderzoekt het lectoraat Co-Design de human en dus desirability-kant, vanzelfsprekend in verbinding met de twee andere elementen.