The developments in city logistics are leading to an increasing number of smaller, time-sensitive deliveries. The parcel market has consistently grown over the past decade, with emerging business models such as ship-from-store (both B2C and B2B) and quick commerce. Moreover, companies are increasingly striving to become more sustainable. To address the challenges of faster delivery, clean transportation (low/zero-emission), and limited space in dense cities, the Light Electric Freight Vehicle (LEFV) presents itself as an innovative solution. This study focuses on LEFVs, encompassing all vehicles with a logistics application ranging from pedal-assisted cargo bikes to light electric vans (LEFV-N1). We specifically examine fresh goods delivery, parcel delivery, service logistics, and construction logistics for urban logistics applications. The study concentrates on factors that account for the potential growth of various types of LEFVs in the Netherlands across these applications over the next decade. The research methodology involves desk research, validation through workshops, quantitative analysis, and interviews with users, legislators, manufacturers, and dealers/leasing companies. The findings of the study include identification of trends, developments, vehicle characteristics, legal frameworks, potential growth opportunities for LEFVs, policies governing LEFV deployment, user profiles, reasons for deployment, and an estimated count of LEFVs in 2027. This count distinguishes between cannibalization on N1 and the number of LEFVs entering new (and partly non-existent) markets.
MULTIFILE
The demand for the transport of goods within the city is rising and with that the number of vans driving around. This has adverse effects on air quality, noise, safety and liveability in the city. LEFVs (Light Electric Freight Vehicles) offer a potential solution for this. There is already a lot of enthusiasm for the LEFVs and several companies have started offering the vehicles. Still many companies are hesitating to start and experience. New knowledge is needed of logistics concepts for the application of LEFVs. This paper shows the outcomes of eight case studies about what is needed to successfully deploy LEFVs for city logistics.
The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery until a full battery of the EVs based on realworld data needs to be analyzed. Many researchers currently view this charging profile as a static load and ignore the actual charging behavior during the charging session. This study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessionsin the Netherlands, enabling optimization analysis of EV smart charging schemes.
A-das-PK; een APK-straat voor rijhulpsystemen Uit recent onderzoek en vragen vanuit de autobranche blijkt een duidelijke behoefte naar goed onderhoud, reparatie en borging van de werking van Advanced Driver Assistance Systems (ADAS), vergelijkbaar met de reguliere APK. Een APK voor ADAS bestaat nog niet, maar de branche wil hier wel op te anticiperen en haar clientèle veilig laten rijden met de rijhulpsystemen. In 2022 worden 30 ADAS’s verplicht en zal de werking van deze systemen ook gedurende de levensduur van de auto gegarandeerd moeten worden. Disfunctioneren van ADAS, zowel in false positives als false negatives kan leiden tot gevaarlijke situaties door onverwacht rijgedrag van het voertuig. Zo kan onverwacht remmen door detectie van een niet bestaand object of op basis van verkeersborden op parallelwegen een kettingbotsing veroorzaken. Om te kijken welke gevolgen een APK heeft voor de autobranche wil A-das-PK voor autobedrijven kijken naar de benodigde apparatuur, opleiding en hard- en software voor een goed werkende APK-straat voor ADAS’s, zodat de kansrijke elementen in een vervolgonderzoek uitgewerkt kunnen worden.
De technische en economische levensduur van auto’s verschilt. Een goed onderhouden auto met dieselmotor uit het bouwjaar 2000 kan technisch perfect functioneren. De economische levensduur van diezelfde auto is echter beperkt bij introductie van strenge milieuzones. Bij de introductie en verplichtstelling van geavanceerde rijtaakondersteunende systemen (ADAS) zien we iets soortgelijks. Hoewel de auto technisch gezien goed functioneert kunnen verouderde software, algorithmes en sensoren leiden tot een beperkte levensduur van de gehele auto. Voorbeelden: - Jeep gehackt: verouderde veiligheidsprotocollen in de software en hardware beperkten de economische levensduur. - Actieve Cruise Control: sensoren/radars van verouderde systemen leiden tot beperkte functionaliteit en gebruikersacceptatie. - Tesla: bij bestaande auto’s worden verouderde sensoren uitgeschakeld waardoor functies uitvallen. In 2019 heeft de EU een verplichting opgelegd aan automobielfabrikanten om 20 nieuwe ADAS in te bouwen in nieuw te ontwikkelen auto’s, ongeacht prijsklasse. De mate waarin deze ADAS de economische levensduur van de auto beperkt is echter nog onvoldoende onderzocht. In deze KIEM wordt dit onderzocht en wordt tevens de parallel getrokken met de mobiele telefonie; beide maken gebruik van moderne sensoren en software. We vergelijken ontwerpeisen van telefoons (levensduur van gemiddeld 2,5 jaar) met de eisen aan moderne ADAS met dezelfde sensoren (levensduur tot 20 jaar). De centrale vraag luidt daarom: Wat is de mogelijke impact van veroudering van ADAS op de economische levensduur van voertuigen en welke lessen kunnen we leren uit de onderliggende ontwerpprincipes van ADAS en Smartphones? De vraag wordt beantwoord door (i) literatuuronderzoek naar de veroudering van ADAS (ii) Interviews met ontwerpers van ADAS, leveranciers van retro-fit systemen en ontwerpers van mobiele telefoons en (iii) vergelijkend rij-onderzoek naar het functioneren van ADAS in auto’s van verschillende leeftijd en prijsklassen.
The maximum capacity of the road infrastructure is being reached due to the number of vehicles that are being introduced on Dutch roads each day. One of the plausible solutions to tackle congestion could be efficient and effective use of road infrastructure using modern technologies such as cooperative mobility. Cooperative mobility relies majorly on big data that is generated potentially by millions of vehicles that are travelling on the road. But how can this data be generated? Modern vehicles already contain a host of sensors that are required for its operation. This data is typically circulated within an automobile via the CAN bus and can in-principle be shared with the outside world considering the privacy aspects of data sharing. The main problem is, however, the difficulty in interpreting this data. This is mainly because the configuration of this data varies between manufacturers and vehicle models and have not been standardized by the manufacturers. Signals from the CAN bus could be manually reverse engineered, but this process is extremely labour-intensive and time-consuming. In this project we investigate if an intelligent tool or specific test procedures could be developed to extract CAN messages and their composition efficiently irrespective of vehicle brand and type. This would lay the foundations that are required to generate big data-sets from in-vehicle data efficiently.