This paper shows an overview of design practices of the XR-lab at the Amsterdam University of Applied Sciences, The Netherlands. Over the course of six years, interdisciplinary teams of students have delivered 55+ prototypes in virtual, augmented, and mixed reality for a variety of 40+ clients. As human-computer interaction is entering a new evolutionary phase towards human-computer integration, new opportunities in extended reality (XR) have the potential to fundamentally alter human characteristics and abilities. Therefore, this paper begins with taking a philosophical stance on ‘being human’ and the anthropological concept of ‘liminality’ in XR-experiences. A further exploration of the concept of 'emotional rehearsal spaces' uses know-how from performance art, dance, architecture, and dramaturgy. Insights from tangible practices at the XR-lab show the cultural journey in XR-collaborations. This is made visible through a quick and dirty experiment on artistic thinking, design thinking, and system thinking, which shows how interdisciplinary collaborations are able to ignite new combinations of thought in design teams and individual professionals. Finally, we show an overview of specific design methods and tools that have been explored at the XR-lab over the years.
Municipalities increasingly seek to include citizens in decision-making processes regarding local issues, such as urban planning. This paper presents a case study on using Virtual Reality (VR) in a process of civic participation in the redesign of a public park. The municipality included citizens in intensive co-design activities to create three designs for the park and engaged the neighbourhood community in co-decision, in the form of a ballot. Through the civic participatory process, we studied the effectiveness of using VR technology to engage the community in participating in the co-decision process. The three designs were presented using highly realistic 360˚ visualisations and the effects on engagement were compared between various devices: VR headsets, smartphones, tablets, and computers. Viewing the designs in 2D paper plans was also included in the comparison. The study included over 1300 respondents that participated in the ballot. A statistical analysis of the collected data shows that participants viewing the 360˚ rendered images with VR technology expressed a significantly higher engagement in the co-decision process than those using their computer at home or viewing 2D paper plans. The paper describes the complete participatory design process and the impact of the e-governance used on the target group as well as on the actors organizing the e-governance process. We discuss how the use of new technology and active presence of a voting-support team inspired citizens to participate in the co-creation process and how the investment in this procedure helped the local authorities to generate support for the plans and strengthen its relationship with the community. The use of realistic visualisations that can be easily assessed by citizens through user-friendly technology, enabled a large and diverse audience to participate. This resulted in greater visibility of municipal efforts to enhance the living environment of citizens and is therefore an important step in increased civic engagement in municipal policy-making and implementation.
In November 2019, scholars and practitioners from ten higher education institutions celebrated the launch of the iKudu project. This project, co-funded by Erasmus [1], focuses on capacity development for curriculum transformation through internationalisation and development of Collaborative Online International Learning (COIL) virtual exchange. Detailed plans for 2020 were discussed including a series of site visits and face-to-face training. However, the realities of the COVID-19 pandemic disrupted the plans in ways that could not have been foreseen and new ways of thinking and doing came to the fore. Writing from an insider perspective as project partners, in this paper we draw from appreciative inquiry, using a metaphor of a mosaic as our identity, to first provide the background on the iKudu project before sharing the impact of the pandemic on the project’s adapted approach. We then discuss how alongside the focus of iKudu in the delivery of an internationalised and transformed curriculum using COIL, we have, by our very approach as project partners, adopted the principles of COIL exchange. A positive impact of the pandemic was that COIL offered a consciousness raising activity, which we suggest could be used more broadly in order to help academics think about international research practice partnerships, and, as in our situation, how internationalised and decolonised curriculum practices might be approached. 1. KA2 Erasmus+ Cooperation for innovation and the exchange of good practices (capacity building in the field of Higher Education)
Doel van dit project is het vergaren van nieuwe kennis over het ontwikkelen van 21st Century skills (CS) binnen het onderwijs van Moleculaire Biologie. De basishypothese is dat de skills kritisch denken, informatievaardigheden en creativiteit kunnen worden gestimuleerd door leerlingen actief, in een construerende rol en in een virtuele omgeving, te laten experimenteren met realistische simulaties van moleculaire processen. Biologiedocenten in de onderbouw van het voortgezet onderwijs geven aan behoefte te hebben aan kennis en een didactisch handelingsrepertoire om leerlingen deze vaardigheden bij te brengen als onderdeel van de ontwikkeling van een wetenschappelijke houding. In alle wetenschappen, in het bijzonder de bètawetenschappen, spelen modellen een belangrijke rol, als middel voor representatie en ontwikkeling van wetenschappelijke kennis. Een probleem bij het bereiken van leerdoelen rond modellen is de visualisatie van processen op moleculair niveau. Met moderne technologieën (zoals VR) kunnen modellen visueel, driedimensionaal op moleculair niveau weergegeven worden en ook de beweging interactie op celniveau. Kritisch en creatief omgaan met dergelijke modellen is de kern van wetenschappelijk denken. In dit project richt het consortium onder leiding van het lectoraat Onderwijsbehoeften en Inclusieve Leeromgevingen van Windesheim zich op de volgende praktijkvraag: ‘Op welke wijze kunnen biologie docenten hun leerlingen 21e-eeuwse vaardigheden (kritisch denken, informatievaardigheden en creativiteit) en modelbegrip bijbrengen met behulp van digitale leermiddelen (zoals VR)?’ Deze praktijkvraag valt uiteen in de volgende onderzoeksvragen: • Welke leeractiviteiten kunnen de ontwikkeling van 21st CS ondersteunen met behulp van VR-technologie gericht op biologische modellen? • Op welke wijze kunnen docenten deze activiteiten toepassen in concrete lessen? • Wat is het formatieve effect van deze lessen op modelbegrip en 21st CS van leerlingen? Het consortium bestaat uit Hogeschool Windesheim, het Freudenthal Instituut van de Universiteit Utrecht, vo scholen (Goois Lyceum en Greydanus Lyceum Zwolle) en een mkb-onderneming (Zepth, Ltd., Singapore) met expertise op het gebied van VR. Gezamenlijk werken deze partners aan het ontwikkelen en onderzoeken van lesmateriaal met behulp van de Lesson Study methode (Fernandez & Yoshida, 2004). Docenten werken in samenwerkende teams en ontwerpen lessen, voeren deze live uit, waarbij ze het leren van de leerlingen observeren. Zo wordt direct inzicht verkregen in de effecten van de formatieve didactische interventies op het leergedrag van leerlingen. De nieuwe kennis draagt bij aan een gemeenschappelijke basis voor het biologieonderwijs in de onderbouw voor de docenten en uiteindelijk aan hogere-orde kritische denkvaardigheden voor alle leerlingen. De ontwikkelde producten bestaan uit uitdagend lesmateriaal geïntegreerd met 2D- en 3D modelleeromgevingen en simulaties ter bevordering van 21st CS en het vormgeven van wetenschappelijke praktijken in de onderbouw. De resultaten worden gepresenteerd in een openbaar toegankelijke ‘live’ onderzoeksles waarin het publiek de effecten van het ontwikkelde onderwijs direct kan observeren.
In dit project wordt een Virtual Reality (VR) neus-maagsonde-training ontwikkeld voor (toekomstige) zorgprofessionals. Het uiteindelijke doel is om middels VR-trainingsapplicaties relevante praktijkomgevingen te simuleren waarin (toekomstige) zorgprofessionals in een veilige én realistische omgeving risicovolle handelingen kunnen oefenen. De neus-maagsonde-training is onderdeel van de opleiding HBO Verpleegkunde, en zorgprofessionals moeten ook periodiek scholing volgen om bevoegd én bekwaam te blijven. De huidige trainingsvorm, met instructeur en fysieke simulatiepop, is effectief in het aanleren van de benodigde handelingen. Maar het vereist ook veel kostbare en schaarse middelen en er zijn beperkingen qua toegankelijkheid, veelzijdigheid en realisme. VR technologie kan verpleegkundige vaardigheidstrainingen en de voorbereiding daarop aanzienlijk verbeteren. De neus-maagsonde-training is een geschikte casus omdat VR-training hier een kosteneffectieve aanvulling lijkt te kunnen zijn. Echter, gezien de kosten van VR ontwikkeling is het belangrijk om een gedegen afweging te kunnen maken. Daarom is het tevens wenselijk om een hulpmiddel te ontwikkelen waarmee de toegevoegde waarde van VR beter afgewogen kan worden. Bijbehorende onderzoeksvragen zijn: I. Aan welke eisen dient een VR-training voor (na-)scholing t.a.v. het inbrengen van een neus-maagsonde te voldoen? II. Welke aspecten van een verpleegtechnische vaardigheidstraining beïnvloeden de mogelijkheid om deze training te verbeteren door de inzet van VR technologie? In de te nemen ontwikkelstappen wordt de Design Thinking methode gevolgd. In co-creatie met twee zorgorganisaties (Zorggroep Solis en Medisch Spectrum Twente) en twee VR-ontwikkelbedrijven (Virtual Dutch Men en Tendr Dynamics) worden de eisen voor de VR-training, en inbedding ervan in praktijkomgevingen, in kaart gebracht. Vervolgens wordt met eindgebruikers de VR-training (door)ontwikkeld en geëvalueerd. Ook wordt een checklist opgesteld, waarmee de afweging van VR in toekomstige verbetertrajecten structureler en efficiënter gemaakt kan worden. Tenslotte wordt een vervolgsubsidieaanvraag voorbereid om de VR-training en checklist verder te optimaliseren, te valideren en te implementeren in de (onderwijs)praktijk.