Over the past 20 years, water quality in Indonesia has deteriorated due to an increase of water pollution. Research and analysis is needed to identify pollution sources and assess contamination in Indonesian water resources. Water quality management is not yet sufficiently integrated in river basin management in Indonesia, which mainly focuses on water quantity. Women are comparatively highly impacted by failing water resources management, but theirinvolvement in decision making processes is limited. Water quality deterioration continues to increase socio-economic inequality, as it are the most poor communities who live on and along the river. The uneven water quality related disease burden in Brantas River Basin widens the socio-economic gap between societal groups. In the Brantas region, cooperation and intention between stakeholders to tackle these issues is growing, but is fragile as well due to overlapping institutional mandates, poor status of water quality monitoring networks, and limited commitment of industries to treat their waste water streams. The existing group of Indonesian change makers will be supported by this project. Three Indonesian and three Dutch organisations have teamed up to support negotiation platforms in order to deal with institutional challenges, to increase water quality monitoring capacity, to build an enabling environment facilitating sustainable industrial change, and to develop an enabling environment in support of community concerns and civil society initiatives. The project builds on integrated water quality monitoring and modelling within a framework of social learning. The strong consortium will be able to build links with civil society groups (including women, farmer and fisher unions) in close cooperation with local, regional and national Indonesian governmentinstitutions to clean the Brantas river and secure income and health for East Java’s population, in particular the most vulnerable groups.
DOCUMENT
Climate change and urbanization will increase the frequency and magnitude of urban flooding and water quality problems in many regions of the world. In coastal and delta areas like The Netherlands and the Philippines, where urbanization is often high, there has been an increase in the adoption of sustainable urban drainage systems (SUDS). SUDS are installed around the world with the expectation to reduce urban flooding and reduce the pollution impact on receiving waters. Most cities in Asia are starting to implement SUDS as their strategy to make their cities sustainable and resilient.The combination of SUDS with appropriate wastewater treatment and management systems have the potential to be multifunctional in alleviating flood run-off, improving water quality, alleviating heat stress and as a source for reusing the stormwater and wastewater.Since the earliest SUDS are implemented in Europe decades ago it is advised to use the lessons learnt in this process. International knowledge exchange is promoted in projects as IWASTO where several organisations from the Philippines and The Netherlands join forces on a specific region as the Pateros riverin Manila with the aim to minimise the pollution impact on this receiving water. The first findings of this project related to storm water and wastewater management are presented in this paper. In this stage of the project high level support models that map the challenges in the city (such as flooding and heatstress) arevaluable tools for implementing cost effective sustainable drainage for improving water quality.
DOCUMENT
Fresh water systems are rapidly changing and water quality is deteriorating as a result of climate change. Aquatic drones can help us understand these changes - which will be key to tackling water-related challenges ahead.The ideas presented in this article aim to inspire adaptation action – they are the views of the author and do not necessarily reflect those of the Global Center on Adaptation.
LINK
Cities are becoming increasingly vulnerable to climate change, and there is an urgent need to make them more resilient. The Climatescan adaptation tool www.climatescan.nl is applied as an interactive tool for knowledge exchange and raising awareness on Nature-Bases Solutions (NBS) targeting young professionals in ClimateCafes. Climatescan is a citizen science tool created through ‘learning by doing’, which is interactive, open source, and provide more detailed information on Best Management Practices (BMPs) as: exact location, website links, free photo and film material. BMPs related to Innovations for Climatic Events (INXCES) as stormwater infiltration by swales, raingardens, water squares, green roofs subsurface infiltration are mapped and published on social media. Climatescan is in continuous development as more data is uploaded by over 250 people around the world, and improvements are made to respond to feedback from users. In an early stage of the international knowledge exchange tool Climatescan, the tool was evaluated by semi-structured interviews in theClimatescan community with the following result: stakeholders demand tools that are interactive, open source, and provide more detailed information (location, free photo and film material). In 2016 Climatescan (first stage of INXCES) was turned into an APP and within two years the tool had over10,000 users and more than 3,000 international projects. More than 60% of the users are younger than 34 and 51% of users are female, resulting in engagement with an important target group: young professionals. The tool is applied in Climatecafe.nl around the world (The Netherlands, Sweden, Philippines, Indonesia, South Africa) where in a short period of time stakeholders in triple helix context (academia, public and private sector) work on climate related challenges and exchange their knowledge in a café setting. Climatescan has also been used in other water challenges with young professionals such as the Hanseatic Water City Challenge and Wetskills. During the INXCES project over 1000 BMPs related to Innovations for Climatic Events (INXCES) are mapped inall partner countries (figure 1). The points of interest vary from just a location with a short description to a full uploaded project with location, description and summary, photos and videos, presentations, links to websites with more information and scientific papers and books (as Bryggen in Norway: https://www.climatescan.nl/projects/16/detail ).
DOCUMENT
This CIENS-report sums up the main findings from the project “Cultural heritage and water management in urban planning” (Urban WATCH), financed by the Research Council of Norway through the MILJØ2015 programme, and cofunded by the Directorate for Cultural Heritage in Norway (Riksantikvaren) and the Geological Survey of Norway (NGU). The project started up in 2012 and ended in 2015.
DOCUMENT
Inland surface water systems are characterized by constant variations in time and space. The increased pressure, of natural or anthropic origin, as a consequence of climate change, population growth and urban development accentuate these changes. Effective water management is key to achieve European waterquality and ecological goals. This is only possible with accurate and extensive knowledge of water systems.The collection of data using platforms such as underwater, water surface or aerial drones is gradually becoming more common and appraised. However, these are not yet standard practice in watermanagement. This work addresses the receptivity of water managers in the Netherlands towards underwater drone technology:· Listing and testing of suitable applications;· Comparison between data requirements of water managers (e.g. legislation) and data thatunderwater drones can provide;· Identification of features should R&D projects focus to increase the interest of the water sector.
DOCUMENT
How do policy analysts perceive the various roles that Models, Simulations and Games (MSG) have, or can have in Integrated Water Resources Management (IWRM)? Fifty-five policy analysts in water management in The Netherlands and China were interviewed, following the procedure of the Q-method. Comparative analysis of the combined quantitative and qualitative data show that: (1) The debate on the role of MSG for IWRM is structured around five frames in The Netherlands and three frames in China. (2) The frames in The Netherlands and China are significantly different. (3) In China, there is a predominant frame that perceives MSG for IWRM as data driven simulation technology for rationalization of water management, which is less significant in The Netherlands. (4) The reverse is true with regard to MSG for stakeholder interaction, learning and integrated assessment, which are significant frames in The Netherlands, but not in China. The conclusion is that frame differences can easily confuse professional and academic debate about MSG for water management; within the same institutional and cultural context, but even more so in Netherlands-China co-operation projects. Frames are also relevant when designing, using or evaluating innovative methods for integrated water resources management.
DOCUMENT
In de binnenstad van Amsterdam wordt door infrastructuurproblematiek en het drukke verkeer de problematiek van bedrijfsafvalinzameling nog meer uitvergroot, naast dat de gemeente uitgesproken ambities heeft voor emissievrije stadslogistiek en de ontwikkeling van de circulaire economie. Daarom onderzoekt de gemeente met partners die actief zijn in afvalinzameling hoe gescheiden afvalstromen collectiever, kleinschaliger en frequenter ingezameld kunnen worden en met behulp van emissievrije, elektrisch aangedreven en lichtgewicht logistieke oplossingen wordt onderzocht. Één van de pilots betreft bedrijfsafvalinzameling over water in het wallengebied en is gerealiseerd door gemeente Amsterdam afdeling bedrijfsafval, afvalverwerker Renewi, logistiek bedrijf ZOEV City en sociaal leer-en werkbedrijf Pantar. Het restafval van een aantal bedrijven wordt door kleine elektrische voertuigen lokaal ingezameld en met een stuwboot naar de verwerker gebracht in plaats van inzameling door de gebruikelijke dieselvuilniswagen.In dit project onderzochten we hoe we een gezamenlijk ontwikkeld businessmodel voor deze nieuwe wijze van inzamelen in de case rendabel kan zijn voor de stakeholders. En we onderzochte hoe het bij kan dragen aan emissievrije logistiek, minder verkeersdruk, leefbaarheid in de omgeving, minder onderhoud aan de kademuren en een verbeterde afvalscheiding voor hergebruik in de circulaire economie. Het rapport laat zien hoe open collaborative business modelling, gecombineerd met impactmetingen kan helpen bij het ontwikkelen van oplossingrichtingen voor nieuwe circulaire samenwerkingsverbanden.
DOCUMENT
Large floating projects have the potential to overcome the challenge of land scarcity in urban areas and offer opportunities for energy and food production, or even for creating sustainable living environments. However, they influence the physical, chemical, biological and ecological characteristics of water bodies. The interaction of the floating platforms affect multiple complex aquatic processes, and the potential (negative/positive) effects are not yet fully understood. Managing entities currently struggle with lack of data and knowledge that can support adequate legislation to regulate future projects.In the Netherlands the development of small scale floating projects is already present for some years (e.g. floating houses, restaurants, houseboats), and more recently several large scale floating photovoltaic plants (FPV) have been realized. Several floating constructions in the Netherlands were considered as case-studies for a data-collection campaign.To obtain data and images from underneath floating buildings, underwater drones were equipped with cameras and sensors. The drones were used in multiple locations to scan for differences in concentrations of basic water quality parameters (e.g. dissolved oxygen, electrical conductivity, algae, light intensity) from underneath/near the floating structures, which were then compared with data from locations far from the influence of the buildings. Continuous data was also collected over several days using multi-parameter water quality sensors permanently installed under floating structures.
DOCUMENT
PowerPoint presentation used during a lecture of (amongst others) Peter van der Maas, professor Sustainable Water Systems at Van Hall Larenstein, on July 8, 2019 at a Living Lab Water Indonesia (LLWI) workshop in Semarang, Indonesia.
DOCUMENT