The paper explores how a post-cognitive approach to human perception can help the design of wearable technologies that augment sense-making. This approach relies on the notion of pure experience to understand how we can make sense of the world without interpreting it, for example through our body, as claimed by phenomenology. In order to understand how to design wearable technologies for pure experience, we first held interviews with experts from different domains, all investigating how to express and recognise pure experience. Subsequently, we had a focus group with professional dancers: given their heightened sense of bodily cognition in their experience, we wanted to verify the extent to which the experts’ practice could be claimed back into the dancers’ experience. In this paper, we will present our preliminary findings.
LINK
Purpose: Recent advancements in wearable computing offer opportunities for art galleries to provide a unique experience. However, to ensure successful implementation of this new technology in the visitor industry, it is essential to understand user requirements from a visitor’s point of view. Therefore, the aim of this paper is to investigate visitors’ requirements for the development of a wearable smart glasses augmented reality (AR) application in the museum and art gallery context. Design/methodology/approach: Interviews with 28 art gallery visitors were conducted and an affinity diagram technique was used to analyze the interviews. Findings: The findings reveal that wearable AR is in its infancy and that technical and design issues have to be overcome for a full adoption. It reveals that content requirement, functional requirement, comfort, experience and resistance are important when developing and implementing the wearable AR application in the museum and art gallery contexts. Originality/value: Mapping user requirements in the wearable smart glasses AR context using an affinity diagram is a new approach and therefore contributes to the creation of knowledge in the tourism domain. Practically, the area of wearable technologies and AR within the tourism and visitor industry context is still relatively unexplored, and the present paper provides a first foundation for the implementation of wearable smart glasses AR applications in the museum and art gallery context.
LINK
Athlete impairment level is an important factor in wheelchair mobility performance (WMP) in sports. Classification systems, aimed to compensate impairment level effects on performance, vary between sports. Improved understanding of resemblances and differences in WMP between sports could aid in optimizing the classification methodology. Furthermore, increased performance insight could be applied in training and wheelchair optimization. The wearable sensor-based wheelchair mobility performance monitor (WMPM) was used to measure WMP of wheelchair basketball, rugby and tennis athletes of (inter-)national level during match-play. As hypothesized, wheelchair basketball athletes show the highest average WMP levels and wheelchair rugby the lowest, whereas wheelchair tennis athletes range in between for most outcomes. Based on WMP profiles, wheelchair basketball requires the highest performance intensity, whereas in wheelchair tennis, maneuverability is the key performance factor. In wheelchair rugby, WMP levels show the highest variation comparable to the high variation in athletes’ impairment levels. These insights could be used to direct classification and training guidelines, with more emphasis on intensity for wheelchair basketball, focus on maneuverability for wheelchair tennis and impairment-level based training programs for wheelchair rugby. Wearable technology use seems a prerequisite for further development of wheelchair sports, on the sports level (classification) and on individual level (training and wheelchair configuration).
Patiëntdata uit vragenlijsten, fysieke testen en ‘wearables’ hebben veel potentie om fysiotherapie-behandelingen te personaliseren (zogeheten ‘datagedragen’ zorg) en gedeelde besluitvorming tussen fysiotherapeut en patiënt te faciliteren. Hiermee kan fysiotherapie mogelijk doelmatiger en effectiever worden. Veel fysiotherapeuten en hun patiënten zien echter nauwelijks meerwaarde in het verzamelen van patiëntdata, maar vooral toegenomen administratieve last. In de bestaande landelijke databases krijgen fysiotherapeuten en hun patiënten de door hen zelf verzamelde patiëntdata via een online dashboard weliswaar teruggekoppeld, maar op een weinig betekenisvolle manier doordat het dashboard primair gericht is op wensen van externe partijen (zoals zorgverzekeraars). Door gebruik te maken van technologische innovaties zoals gepersonaliseerde datavisualisaties op basis van geavanceerde data science analyses kunnen patiëntdata betekenisvoller teruggekoppeld en ingezet worden. Wij zetten technologie dus in om ‘datagedragen’, gepersonaliseerde zorg, in dit geval binnen de fysiotherapie, een stap dichterbij te brengen. De kennis opgedaan in de project is tevens relevant voor andere zorgberoepen. In dit KIEM-project worden eerst wensen van eindgebruikers, bestaande succesvolle datavisualisaties en de hiervoor vereiste data science analyses geïnventariseerd (werkpakket 1: inventarisatie). Op basis hiervan worden meerdere prototypes van inzichtelijke datavisualisaties ontwikkeld (bijvoorbeeld visualisatie van patiëntscores in vergelijking met (beoogde) normscores, of van voorspelling van verwacht herstel op basis van data van vergelijkbare eerdere patiënten). Middels focusgroepinterviews met fysiotherapeuten en patiënten worden hieruit de meest kansrijke (maximaal 5) prototypes geselecteerd. Voor deze geselecteerde prototypes worden vervolgens de vereiste data-analyses ontwikkeld die de datavisualisaties op de dashboards van de landelijke databases mogelijk maken (werkpakket 2: prototypes en data-analyses). In kleine pilots worden deze datavisualisaties door eindgebruikers toegepast in de praktijk om te bepalen of ze daadwerkelijk aan hun wensen voldoen (werkpakket 3: pilots). Uit dit 1-jarige project kan een groot vervolgonderzoek ‘ontkiemen’ naar het effect van betekenisvolle datavisualisaties op de uitkomsten van zorg.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
Developing and testing several AR and VR concepts for SAMSUNG (Benelux) Samsung and Breda University of Applied Sciences decided to work together on developing and testing several new digital media concepts with a focus on VR and gaming. This collaboration has led to several innovative projects and concepts, among others: the organisation of the first Samsung VR jam in which game and media students developed new concepts for SAMSUNG GEAR in 24 hours, the pre-development of a VR therapy concept (Fear of Love) created by CaptainVR, the Samsung Industry Case in which students developed new concepts for SAMSUNG GEAR (wearables), the IGAD VR game pitch where over 15 VR game concepts were created for SAMSUNG VR GEAR and numerous projects in which VR concepts are developed and created using new SAMSUNG technologies. Currently we are co-developing new digital HRM solutions.