The aim of this explorative study was to determine the key inertial measurement unit-based wheelchair mobility performance components during a wheelchair tennis match. A total of 64 wheelchair tennis matches were played by 15 wheelchair tennis players (6 women, 5 men, 4 juniors). All individual tennis wheelchairs were instrumented with inertial measurement units, two on the axes of the wheels and one on the frame. A total of 48 potentially relevant wheelchair tennis outcome variables were initially extracted from the sensor signals, based on previous wheelchair sports research and the input of wheelchair tennis experts (coaches, embedded scientists). A principal component analysis was used to reduce this set of variables to the most relevant outcomes for wheelchair tennis mobility. Results showed that wheelchair mobility performance in wheelchair tennis can be described by six components: rotations to racket side in (1) curves and (2) turns; (3) linear accelerations; (4) rotations to non-racket side in (4) turns and (5) curves; and finally, (6) linear velocities. One or two outcome variables per component were selected to allow an easier interpretation of results. These key outcome variables can be used to adequately describe the wheelchair mobility performance aspect of wheelchair tennis during a wheelchair tennis match and can be monitored during training.
DOCUMENT
Objective: Despite the common occurrence of lower levels of physical activity and physical fitness in youth with spina bifida (SB) who use a wheelchair, there are very few tests available to measure and assess these levels. The purpose of this study was to determine reliability and the physiologic response of the 6-minute push test (6MPT) in youth with SB who self-propel a wheelchair. Methods: In this reliability and observational study, a sample of 53 youth with SB (5-19 years old; mean age = 13 years 7 months; 32 boys and 21 girls) who used a wheelchair performed 2 exercise tests: the 6MPT and shuttle ride test. Heart rate, minute ventilation, respiratory exchange ratio, and oxygen consumption were measured using a calibrated mobile gas analysis system and a heart rate monitor. For reliability, intraclass correlation coefficients (ICCs), SE of measurement, smallest detectable change for total covered distance, minute work, and heart rate were calculated. Physiologic response during the 6MPT was expressed as percentage of maximal values achieved during the shuttle ride test. Results: The ICCs for total distance and minute work were excellent (0.95 and 0.97, respectively), and the ICC for heart rate was good (0.81). The physiologic response during the 6MPT was 85% to 89% of maximal values, except for minute ventilation (70.6%). Conclusions: For most youth with SB who use a wheelchair for mobility or sports participation, the 6MPT is a reliable, functional performance test on a vigorous level of exercise. Impact: This is the first study to investigate physiologic response during the 6MPT in youth (with SB) who are wheelchair using. Clinicians can use the 6MPT to evaluate functional performance and help design effective exercise programs for youth with SB who are wheelchair using. Keywords: 6-minute push test; adolescent; disabled children; spinal diseases; wheelchairs.
DOCUMENT
Athlete impairment level is an important factor in wheelchair mobility performance (WMP) in sports. Classification systems, aimed to compensate impairment level effects on performance, vary between sports. Improved understanding of resemblances and differences in WMP between sports could aid in optimizing the classification methodology. Furthermore, increased performance insight could be applied in training and wheelchair optimization. The wearable sensor-based wheelchair mobility performance monitor (WMPM) was used to measure WMP of wheelchair basketball, rugby and tennis athletes of (inter-)national level during match-play. As hypothesized, wheelchair basketball athletes show the highest average WMP levels and wheelchair rugby the lowest, whereas wheelchair tennis athletes range in between for most outcomes. Based on WMP profiles, wheelchair basketball requires the highest performance intensity, whereas in wheelchair tennis, maneuverability is the key performance factor. In wheelchair rugby, WMP levels show the highest variation comparable to the high variation in athletes’ impairment levels. These insights could be used to direct classification and training guidelines, with more emphasis on intensity for wheelchair basketball, focus on maneuverability for wheelchair tennis and impairment-level based training programs for wheelchair rugby. Wearable technology use seems a prerequisite for further development of wheelchair sports, on the sports level (classification) and on individual level (training and wheelchair configuration).
DOCUMENT