This paper explores how, in the light of global economic downturn and rising student populations, new academic-industrial models for research collaboration based upon specific technological expertise and knowledge can be developed as potential mechanisms for preserving and extending central university research infrastructure. The paper explores two case studies that focus upon the new serious games sector: the UK-based Coventry University's Serious Games Institute - a hybrid model of applied research and business, and the Netherlands-based TU-Delft University's Serious Game Center - a networked model of semi-commercial funding and public-private co-operation between industry, public sector and research partners. To facilitate these kinds of academic-industrial collaborations, the paper introduces the Innovation Diffusion Model (IDM) which promotes innovation diffusion by bringing academic and industrial experts into close proximity. Overall, the benefits include: sustained intellectual property development and publication opportunities for academics, employment creation, accelerated development and real commercial benefits for industrial partners.
DOCUMENT
Only a few efforts have been made to define competencies for epidemiologists working in academic settings. Here we describe a multi-national effort to define competencies for epidemiologists who are increasingly facing emerging and potentially disruptive technological and societal health trends in academic research. During a 1,5 years period, we followed an iterative process that aimed to be inclusive and multi-national to reflect the various perspectives of the diverse group of epidemiologists. Competencies were developed by a consortium in a consensus-oriented process that spanned three main activities: two in-person interactive meetings in Amsterdam and Zurich and an online survey. In total, 93 meeting participants from 16 countries and 173 respondents from 19 countries contributed to the development of 31 competencies. These 31 competencies included 14 on "Developing a scientific question" and "Study planning", 12 on "Study conduct & analysis", 3 on "Overarching competencies" and 2 competencies on "Communication and translation". The process described here provides a consensus-based framework for defining and adapting the field. It should initiate a continuous process of thinking about competencies and the implications for teaching epidemiology to ensure that epidemiologists working in academic settings are well prepared for today's and tomorrow's health research.
MULTIFILE
To elucidate how authoritative knowledge is established for better dealing with unstructured urban problems, this article describes how collaborations between researchers and officials become an instrument for conceptualizing and addressing policy problems. A case study is used to describe a research consortium evaluating the controversial practice of ‘Lifestyle’ based housing allocation in the Dutch domain of social-housing. Analyzing this case in key episodes, we see researchers and policymakers selectively draw on established institutional practices—their so called ‘home practices’—to jointly (re-)structure problems. In addition, we find that restructuring problems is not only intertwined with, but also deliberately aimed at (re-)structuring the relations within and between the governmental practices, the actors are embedded in. It is by selectively tinkering with knowledges, values, norms, and criteria that the actors can deliberately enable and constrain the ways a real-world problem is addressed.
DOCUMENT
In the context of a European knowledge economy, the Dutch non-university institutions systematically develop research activities at a higher frequency than before. With this development, they have been accused of academic drift, of striving to receive a status comparable to traditional universities. This study considers the perceptions of both managers and lecturers in non-university higher education concerning the organisational aims for research activities. The intention is to add an empirical base to the debate of academic drift, especially to the potential of academic drift on the staff level. The results show a moderate indication of potential for academic drift on the staff level. In addition, managers have more positive perceptions regarding all aims for research than lecturers, but both groups prioritise that the results of research should, first and foremost, be directed towards improving the quality of education.
DOCUMENT
Little has been published regarding the training of academic developers themselves to support internationalization of the curriculum (IoC) initiatives. However, higher education institutions around the globe are responding to strategic demands for IoC which prepare students as ‘world-ready’ graduates. We employed qualitative research synthesis to identify recent journal articles which consider current trends in academic development to support IoC. Despite their diversity, we found common themes in the five selected studies. Our discussion and recommendations weave these themes with Betty Leask’s five-stage model of the process of IoC and Cynthia Joseph’s call for a pedagogy of social justice. “This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal for Academic Development on 19/11/15, available online: https://doi.org/10.1080/1360144X.2019.1691559.
MULTIFILE
From the author: " This short paper argues for the need for discussion on the role social media could have in the research life cycle, particularly for Information Systems (IS) scholars. ICTs are pervasive, and their societal impact is profound. Various disciplines including those of social sciences are present in the online discourse and join the public debate on societal implications of ICTs and scholar are familiar with web tools for publishing. Information Systems scholars could not only further explore the possibilities for joining that online discourse, but also could explore the potential social media may have for activities related to the research life cycle. In this paper we do not focus solely on social media as a data collection source but regard their merits as a channel for scholarly communication throughout the whole research life cycle, from the start of getting inspired to conduct a research, finding collaboration partners or funding, through suggestions for literature, to the stage of research dissemination and creating impact beyond the own scientific community. This paper contributes an original approach to research communication by combining the research life cycle with practical insights of how social media can be applied throughout each phase of that lifecycle. We conclude with some questions debating the stance that (future) IS scholars are prepared to become the digital scholar that can manoeuvre well on social media for scholarly communication."
DOCUMENT
There is an increasing interest in how to create an effective and comfortable indoor environment for lecturers and students in higher education. To achieve evidence-based improvements in the indoor environmental quality (IEQ) of higher education learning environments, this research aimed to gain new knowledge for creating optimal indoor environmental conditions that best facilitate in-class activities, i.e. teaching and learning, and foster academic achievement. The academic performance of lecturers and students is subdivided into short-term academic performance, for example, during a lecture and long-term academic performance, during an academic course or year, for example. First, a systematic literature review was conducted to reveal the effect of indoor environmental quality in classrooms in higher education on the quality of teaching, the quality of learning, and students’ academic achievement. With the information gathered on the applied methods during the literature review, a systematic approach was developed and validated to capture the effect of the IEQ on the main outcomes. This approach enables research that aims to examine the effect of all four IEQ parameters, indoor air quality, thermal conditions, lighting conditions, and acoustic conditions on students’ perceptions, responses, and short-term academic performance in the context of higher education classrooms. Next, a field experiment was conducted, applying the validated systematic approach, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. Finally, a qualitative case study gathered lecturers’ and students’ perceptions related to the IEQ. Furthermore, how these users interact with the environment to maintain an acceptable IEQ was studied. During the systematic literature review, multiple scientific databases were searched to identify relevant scientific evidence. After the screening process, 21 publications were included. The collected evidence showed that IEQ can contribute positively to students’ academic achievement. However, it can also affect the performance of students negatively, even if the IEQ meets current standards for classrooms’ IEQ conditions. Not one optimal IEQ was identified after studying the evidence. Indoor environmental conditions in which students perform at their best differ and are task depended, indicating that classrooms should facilitate multiple indoor environmental conditions. Furthermore, the evidence provides practical information for improving the design of experimental studies, helps researchers in identifying relevant parameters, and lists methods to examine the influence of the IEQ on users. The measurement methods deduced from the included studies of the literature review, were used for the development of a systematic approach measuring classroom IEQ and students’ perceived IEQ, internal responses, and short-term academic performance. This approach allowed studying the effect of multiple IEQ parameters simultaneously and was tested in a pilot study during a regular academic course. The perceptions, internal responses, and short-term academic performance of participating students were measured. The results show associations between natural variations of the IEQ and students’ perceptions. These perceptions were associated with their physiological and cognitive responses. Furthermore, students’ perceived cognitive responses were associated with their short-term academic performance. These observed associations confirm the construct validity of the composed systematic approach. S Summary 9 This systematic approach was then applied in a field experiment, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. A field study, with a between-groups experimental design, was conducted during a regular academic course in 2020-2021 to analyze the effect of different acoustic, lighting, and indoor air quality (IAQ) conditions. First, the reverberation time was manipulated to 0.4 s in the intervention condition (control condition 0.6 s). Second, the horizontal illuminance level was raised from 500 to 750 lx in the intervention condition (control condition 500 lx). These conditions correspond with quality class A (intervention condition) and B (control condition), specified in Dutch IEQ guidelines for school buildings (2015). Third, the IAQ, which was ~1100 ppm carbon dioxide (CO2), as a proxy for IAQ, was improved to CO2 concentrations under 800 ppm, meeting quality class A in both conditions. Students’ perceptions were measured during seven campaigns with a questionnaire; their actual cognitive and shortterm academic performances were evaluated with validated tests and an academic test, composed by the lecturer, as a subject-matter-expert on the taught topic, covered subjects discussed during the lecture. From 201 students 527 responses were collected and analyzed. A reduced RT in combination with raised HI improved students’ perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students’ ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students’ perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknown Finally, a qualitative case study explored lecturers’ and students’ perceptions of the IEQ of classrooms, which are suitable to give tutorials with a maximum capacity of about 30 students. Furthermore, how lecturers and students interact with this indoor environment to maintain an acceptable IEQ was examined. Eleven lecturers of the Hanze University of Applied Sciences (UAS), located in the northern part of the Netherlands, and twenty-four of its students participated in three focus group discussions. The findings show that lecturers and students experience poor thermal, lighting, acoustic, and IAQ conditions which may influence teaching and learning performance. Furthermore, maintaining acceptable thermal and IAQ conditions was difficult for lecturers as opening windows or doors caused noise disturbances. In uncomfortable conditions, lecturers may decide to pause earlier or shorten a lecture. When students experienced discomfort, it may affect their ability to concentrate, their emotional status, and their quality of learning. Acceptable air and thermal conditions in classrooms will mitigate the need to open windows and doors. This allows lecturers to keep doors and windows closed, combining better classroom conditions with neither noise disturbances nor related distractions. Designers and engineers should take these end users’ perceptions into account, often monitored by facility management (FM), during the renovation or construction of university buildings to achieve optimal IEQ conditions in higher education classrooms. Summary 10 The results of these four studies indicate that there is not a one-size fits all indoor environmental quality to facilitate optimal in-class activities. Classrooms’ thermal environment should be effectively controlled with the option of a local (manual) intervention. Classrooms’ lighting conditions should also be adjustable, both in light color and light intensity. This enables lecturers to adjust the indoor environment to facilitate in-class activities optimally. Lecturers must be informed by the building operator, for example, professionals of the Facility Department, how to change classrooms’ IEQ settings. And this may differ per classroom because each building, in which the classroom is located, is operated differently apart from the classroom location in the building, exposure to the environment, and its use. The knowledge that has come available from this study, shows that optimal indoor environmental conditions can positively influence lecturers’ and students’ comfort, health, emotional balance, and performance. These outcomes have the capacity to contribute to an improved school climate and thus academic achievement.
LINK
Increasing mental health issues, such as emotional problems, pose a threat for the academic performance of undergraduate students. We propose a route connecting emotional problems and academic performance through executive functioning skills (EFS). Despite the abundance of research on the topic of EFS, there is a significant gap in understanding this route, specifically among a population of undergraduate students. The aim of this study was to examine whether EFS mediated the association between emotional problems and academic performance among undergraduate students. Cross-sectional data (n = 2,531) was used from a survey among Dutch undergraduate students from a large variety of faculties at a university of applied sciences. We assessed emotional problems using the Depression Anxiety Stress Scale-21, five EFS (cognitive inhibition, task initiation, sustained attention, planning, time management), and academic performance (study delay; yes/no). Mediation analyses were performed, using the Hayes PROCESS macro, adjusted for gender. We found that cognitive inhibition, task initiation, sustained attention, planning, and time management mediated the association between emotional problems and academic performance. Regarding separate EFS, no large differences were found. The data suggests that improving all EFS in undergraduates experiencing emotional problems could be a fruitful strategy for preventing academic delays.
DOCUMENT
This article describes the relation between mental health and academic performance during the start of college and how AI-enhanced chatbot interventions could prevent both study problems and mental health problems.
DOCUMENT