Innovation Lab: unique collaboration between Hanze University and Prison VeenhuizenUitleg en vervolg op de Prison Achievement Award
LINK
The design of health game rewards for preadolescents Videogames are a promising strategy for child health interventions, but their impact can vary depending on the game mechanics used. This study investigated achievement-based ‘rewards’ and their design among preadolescents (8-12 years) to assess their effect and explain how they work. In a 2 (game reward achievement system: social vs. personal) x 2 (game reward context: in-game vs. out-game) between-subjects design, 178 children were randomly assigned to one of four conditions. Findings indicated that a ‘personal’ achievement system (showing one’s own high scores) led to more attention and less frustration than a ‘social’ achievement system (showing also high scores of others) which, in turn, increased children’s motivation to make healthy food choices. Furthermore, ‘out’-game rewards (tangible stickers allocated outside the game environment) were liked more than ‘in’-game rewards (virtual stickers allocated in the game environment), leading to greater satisfaction and, in turn, a higher motivation to make healthy food choices.
LINK
Introduction Student success is positively linked to engagement, but negatively linked to emotional exhaustion. Though both constructs have been conceptualized as opposites previously, we hypothesize that students can demonstrate high or low engagement and emotional exhaustion simultaneously. We used quantitative and qualitative data to identify the existence of four student profiles based on engagement and exhaustion scores. Furthermore, we studied how profiles associate to study behaviour, wellbeing and academic achievement, and what risks, protective factors and support requirements students and teachers identify for these profiles. Methods The Student Wellbeing Monitor 2021, developed by Inholland University of Applied Sciences, was used to identify profiles using quadrant analyses based on high and low levels of engagement and emotional exhaustion (n= 1460). Correlation analyses assessed profile specific differences on study behaviours, academic delay, and wellbeing. Semi-structured interviews with students and teachers are currently in progress to further explore the profiles, to identify early signals, and to inspect support requirements. Results The quadrant analysis revealed four profiles: low engagement and low exhaustion (energised-disengaged; 9%), high engagement and low exhaustion (energised-engaged; 15%), low engagement and high exhaustion (exhausted-disengaged; 48%), and high engagement and high exhaustion (exhausted-engaged; 29%). Overall, engaged students demonstrated more active study behaviours and more social connections and interactions with fellow students and teachers. The exhausted students scored higher on depressive symptoms and stress. The exhausted-engaged students reported the highest levels of performance pressure, while the energised-disengaged students had the lowest levels of performance pressure. So far, students and teachers recognise the profiles and have suggested several support recommendations for each profile. Discussion The results show that students can be engaged but at the same time are exhausting themselves. A person-oriented mixed-methods approach helps students and teachers gain awareness of the diversity and needs of students, and improve wellbeing and student success.
MULTIFILE
There is an increasing interest in how to create an effective and comfortable indoor environment for lecturers and students in higher education. To achieve evidence-based improvements in the indoor environmental quality (IEQ) of higher education learning environments, this research aimed to gain new knowledge for creating optimal indoor environmental conditions that best facilitate in-class activities, i.e. teaching and learning, and foster academic achievement. The academic performance of lecturers and students is subdivided into short-term academic performance, for example, during a lecture and long-term academic performance, during an academic course or year, for example. First, a systematic literature review was conducted to reveal the effect of indoor environmental quality in classrooms in higher education on the quality of teaching, the quality of learning, and students’ academic achievement. With the information gathered on the applied methods during the literature review, a systematic approach was developed and validated to capture the effect of the IEQ on the main outcomes. This approach enables research that aims to examine the effect of all four IEQ parameters, indoor air quality, thermal conditions, lighting conditions, and acoustic conditions on students’ perceptions, responses, and short-term academic performance in the context of higher education classrooms. Next, a field experiment was conducted, applying the validated systematic approach, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. Finally, a qualitative case study gathered lecturers’ and students’ perceptions related to the IEQ. Furthermore, how these users interact with the environment to maintain an acceptable IEQ was studied. During the systematic literature review, multiple scientific databases were searched to identify relevant scientific evidence. After the screening process, 21 publications were included. The collected evidence showed that IEQ can contribute positively to students’ academic achievement. However, it can also affect the performance of students negatively, even if the IEQ meets current standards for classrooms’ IEQ conditions. Not one optimal IEQ was identified after studying the evidence. Indoor environmental conditions in which students perform at their best differ and are task depended, indicating that classrooms should facilitate multiple indoor environmental conditions. Furthermore, the evidence provides practical information for improving the design of experimental studies, helps researchers in identifying relevant parameters, and lists methods to examine the influence of the IEQ on users. The measurement methods deduced from the included studies of the literature review, were used for the development of a systematic approach measuring classroom IEQ and students’ perceived IEQ, internal responses, and short-term academic performance. This approach allowed studying the effect of multiple IEQ parameters simultaneously and was tested in a pilot study during a regular academic course. The perceptions, internal responses, and short-term academic performance of participating students were measured. The results show associations between natural variations of the IEQ and students’ perceptions. These perceptions were associated with their physiological and cognitive responses. Furthermore, students’ perceived cognitive responses were associated with their short-term academic performance. These observed associations confirm the construct validity of the composed systematic approach. S Summary 9 This systematic approach was then applied in a field experiment, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. A field study, with a between-groups experimental design, was conducted during a regular academic course in 2020-2021 to analyze the effect of different acoustic, lighting, and indoor air quality (IAQ) conditions. First, the reverberation time was manipulated to 0.4 s in the intervention condition (control condition 0.6 s). Second, the horizontal illuminance level was raised from 500 to 750 lx in the intervention condition (control condition 500 lx). These conditions correspond with quality class A (intervention condition) and B (control condition), specified in Dutch IEQ guidelines for school buildings (2015). Third, the IAQ, which was ~1100 ppm carbon dioxide (CO2), as a proxy for IAQ, was improved to CO2 concentrations under 800 ppm, meeting quality class A in both conditions. Students’ perceptions were measured during seven campaigns with a questionnaire; their actual cognitive and shortterm academic performances were evaluated with validated tests and an academic test, composed by the lecturer, as a subject-matter-expert on the taught topic, covered subjects discussed during the lecture. From 201 students 527 responses were collected and analyzed. A reduced RT in combination with raised HI improved students’ perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students’ ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students’ perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknown Finally, a qualitative case study explored lecturers’ and students’ perceptions of the IEQ of classrooms, which are suitable to give tutorials with a maximum capacity of about 30 students. Furthermore, how lecturers and students interact with this indoor environment to maintain an acceptable IEQ was examined. Eleven lecturers of the Hanze University of Applied Sciences (UAS), located in the northern part of the Netherlands, and twenty-four of its students participated in three focus group discussions. The findings show that lecturers and students experience poor thermal, lighting, acoustic, and IAQ conditions which may influence teaching and learning performance. Furthermore, maintaining acceptable thermal and IAQ conditions was difficult for lecturers as opening windows or doors caused noise disturbances. In uncomfortable conditions, lecturers may decide to pause earlier or shorten a lecture. When students experienced discomfort, it may affect their ability to concentrate, their emotional status, and their quality of learning. Acceptable air and thermal conditions in classrooms will mitigate the need to open windows and doors. This allows lecturers to keep doors and windows closed, combining better classroom conditions with neither noise disturbances nor related distractions. Designers and engineers should take these end users’ perceptions into account, often monitored by facility management (FM), during the renovation or construction of university buildings to achieve optimal IEQ conditions in higher education classrooms. Summary 10 The results of these four studies indicate that there is not a one-size fits all indoor environmental quality to facilitate optimal in-class activities. Classrooms’ thermal environment should be effectively controlled with the option of a local (manual) intervention. Classrooms’ lighting conditions should also be adjustable, both in light color and light intensity. This enables lecturers to adjust the indoor environment to facilitate in-class activities optimally. Lecturers must be informed by the building operator, for example, professionals of the Facility Department, how to change classrooms’ IEQ settings. And this may differ per classroom because each building, in which the classroom is located, is operated differently apart from the classroom location in the building, exposure to the environment, and its use. The knowledge that has come available from this study, shows that optimal indoor environmental conditions can positively influence lecturers’ and students’ comfort, health, emotional balance, and performance. These outcomes have the capacity to contribute to an improved school climate and thus academic achievement.
LINK
Student achievement is a frequently debated issue in many European countries. In most public debates, it is assumed that all school-level stakeholders hold the same beliefs about student achievement. This paper contributes to the debate by presenting the results of research on the beliefs of teachers regarding student achievement.The results reveal four beliefs about student achievement held by teachers. The beliefs are centred on student efficiency, learning and enhancing skills, personal development, and active citizenship. The dominant belief is about the preparation for a profession in which a high-achieving student has good prospects of becoming a successful professional in a particular field. The results also show that the dominant belief held by school administrators(management), namely that student achievement is the same as student efficiency (how quickly students complete their studies), is questioned by teachers.
DOCUMENT
Using path analysis, the present study focuses on the development of a model describing the impact of four judgments of self-perceived academic competence on higher education students' achievement goals, learning approach, and academic performance. Results demonstrate that academic self-efficacy, self-efficacy for self-regulated learning, academic self-concept, and perceived level of understanding are conceptually and empirically distinct self-appraisals of academic competence which have a different impact on student motivation, learning, and academic performance. Furthermore, the current study suggests that students reflecting high scores on the four measures of self-perceived competence, are more persistent, more likely to adopt mastery and/or performance approach goals, less anxious, process the learning material at a deeper level, and achieve better study results. However, this study also warns that high self-perceived competence (e.g., perceived level of understanding), if not accompanied by a mastery goal orientation, can turn into overconfidence resulting in lower persistence levels and poorer study results.
LINK
In business higher education, group project work plays an essential role. The purpose of the present study is to explore the relationship between the group heterogeneity of students’ business project groups and their academic achievements at both group and individual levels. The sample consists of 536 freshmen from an International Business School in a Dutch University. The research has revealed that students’ academic performances are positively correlated with their achievement in group projects at both individual and group levels. However, the group ethnic heterogeneity is negatively related with students’ project scores. The findings may enable education practitioners to gain more insights into students’ project work and manage students’ group work more effectively.
LINK
Corrigendum to original article: Elwin R. Savelsbergh, Gjalt T. Prins, Charlotte Rietbergen, Sabine Fechner, Bram E. Vaessen, Jael M. Draijer, Arthur Bakker Effects of innovative science and mathematics teaching on student attitudes and achievement: A meta-analytic study Educational Research Review, Volume 19, November 2016, Pages 158-172 https://doi.org/10.1016/j.edurev.2016.07.003
LINK
A promising contribution of Learning Analytics is the presentation of a learner's own learning behaviour and achievements via dashboards, often in comparison to peers, with the goal of improving self-regulated learning. However, there is a lack of empirical evidence on the impact of these dashboards and few designs are informed by theory. Many dashboard designs struggle to translate awareness of learning processes into actual self-regulated learning. In this study we investigate a Learning Analytics dashboard based on existing evidence on social comparison to support motivation, metacognition and academic achievement. Motivation plays a key role in whether learners will engage in self-regulated learning in the first place. Social comparison can be a significant driver in increasing motivation. We performed two randomised controlled interventions in different higher-education courses, one of which took place online due to the COVID-19 pandemic. Students were shown their current and predicted performance in a course alongside that of peers with similar goal grades. The sample of peers was selected in a way to elicit slight upward comparison. We found that the dashboard successfully promotes extrinsic motivation and leads to higher academic achievement, indicating an effect of dashboard exposure on learning behaviour, despite an absence of effects on metacognition. These results provide evidence that carefully designed social comparison, rooted in theory and empirical evidence, can be used to boost motivation and performance. Our dashboard is a successful example of how social comparison can be implemented in Learning Analytics Dashboards.
MULTIFILE
BackgroundIn the Netherlands, there has been a strong increase in diversity among students in recent decades. Even though access for previously underrepresented groups based on economic status, ethnicity or culture has been realised to a certain extent, differences in student performance between groups persist. Research shows that teacher performance influences student achievement and that this influence is more pronounced for 'non-western students'. This creates a need for reflection on the way teachers cope with their increasingly diverse student population. This paper explores the attitudes of Dutch teachers in higher vocational education towards their diverse student population and the translation of these attitudes into teaching practice.MethodsTwenty-five teacher teams at two universities of applied sciences participated in this research. The teams came from a broad range of programmes that educate students for different future professions. A mixed method methodology was used to gather data, in which the qualitative method was most substantial. Focus group interviews on diversity and student achievement were held with each teacher team. Additionally, a questionnaire was distributed to all 274 participants, which was completed by 215 teachers. Data from the questionnaire were analysed using SPSS. In order to analyse the qualitative data we used AtlasTI. Because we applied a grounded approach, allowing teachers to form their own ideas on both diversity and student achievement, we used a similar approach in the first analytical phase. In a second phase, we compared the concepts arising from the grounded theory approach with concepts from the literature.Results and conclusionsAround 40% of the teachers repudiated the influence of diversity on student achievement and did not take student diversity into account in their teaching practice. Problems regarding the student achievement of students or groups thereof are considered as something that the students, the educational institution or society at large should cope with, not teachers themselves. Of the teachers, 60% recognised diversity among students, but mainly based on students’ shortcomings and perceived problems. A minority of this 60% not only recognised but also understood diversity’s effect on student achievement. Teachers do not always translate this understanding into their teaching practice. They feel they lack the skills, knowledge or time to do so. Teachers seemingly translate their understanding of diversity into their didactic and pedagogical approaches only when these conditions are met.
DOCUMENT