Background: Due to multimorbidity and geriatric problems, older people often require both psychosocial and medical care. Collaboration between medical and social professionals is a prerequisite to deliver high-quality care for community-living older people. Effective, safe, and person-centered care relies on skilled interprofessional collaboration and practice. Little is known about interprofessional education to increase interprofessional collaboration in practice (IPCP) in the context of community care for older people. This study examines the feasibility of the implementation of an IPCP program in three community districts and determines its potential to increase interprofessional collaboration between primary healthcare professionals caring for older people. Method: A feasibility study was conducted to determine the acceptability and feasibility of data collection and analysis regarding interprofessional collaboration in network development. A questionnaire was used to measure the learning experience and the acquisition of knowledge and skills regarding the program. Network development was assessed by distributing a social network survey among professionals attending the program as well as professionals not attending the program at baseline and 5.5 months after. Network development was determined by calculating the number, reciprocity, value, and diversity of contacts between professionals using social network analysis. Results: The IPCP program was found to be instructive and the knowledge and skills gained were applicable in practice. Social network analysis was feasible to conduct and revealed a spill-over effect regarding network development. Program participants, as well as non-program participants, had larger, more reciprocal, and more diverse interprofessional networks than they did before the program. Conclusions: This study showed the feasibility of implementing an IPCP program in terms of acceptability, feasibility of data collection, and social network analysis to measure network development, and indicated potential to increase interprofessional collaboration between primary healthcare professionals. Both program participants and non-program participants developed a larger, more collaborative, and diverse interprofessional network.
Background: Cervical dystonia is characterized by involuntary muscle contractions of the neck and abnormal head positions that affect daily life activities and social life of patients. Patients are usually treated with botulinum toxin injections into affected neck muscles to relief pain and improve control of head postures. In addition, many patients are referred for physical therapy to improve their ability to perform activities of daily living. A recent review on allied health interventions in cervical dystonia showed a lack of randomized controlled intervention studies regarding the effectiveness of physical therapy interventions.Methods/design: The (cost-) effectiveness of a standardized physical therapy program compared to regular physical therapy, both as add-on treatment to botulinum toxin injections will be determined in a multi-centre, single blinded randomized controlled trial with 100 cervical dystonia patients. Primary outcomes are disability in daily functioning assessed with the disability subscale of the Toronto Western Spasmodic Torticollis Rating Scale. Secondary outcomes are pain, severity of dystonia, active range of motion of the head, quality of life, anxiety and depression. Data will be collected at baseline, after six months and one year by an independent blind assessor just prior to botulinum toxin injections. For the cost effectiveness, an additional economic evaluation will be performed with the costs per quality adjusted life-year as primary outcome parameter.Discussion: Our study will provide new evidence regarding the (cost-) effectiveness of a standardized, tailored physical therapy program for patients with cervical dystonia. It is widely felt that allied health interventions, including physical therapy, may offer a valuable supplement to the current therapeutic options. A positive outcome will lead to a greater use of the standardized physical therapy program. For the Dutch situation a positive outcome implies that the standardized physical therapy program forms the basis for a national treatment guideline for cervical dystonia.Trial registration: Number Dutch Trial registration (Nederlands Trial Register): NTR3437.
Background: Many community-dwelling older adults experience limitations in (instrumental) activities of daily living, resulting in the need for homecare services. Whereas services should ideally aim at maintaining independence, homecare staff often take over activities, thereby undermining older adults’ self-care skills and jeopardizing their ability to continue living at home. Reablement is an innovative care approach aimed at optimizing independence. The reablement training program ‘Stay Active at Home’ for homecare staff was designed to support the implementation of reablement in the delivery of homecare services. This study evaluated the implementation, mechanisms of impact and context of the program. Methods: We conducted a process evaluation alongside a 12-month cluster randomized controlled trial, using an embedded mixed-methods design. One hundred fifty-four homecare staff members (23 nurses, 34 nurse assistants, 8 nurse aides and 89 domestic workers) from five working areas received the program. Data on the implementation (reach, dose, fidelity, adaptations and acceptability), possible mechanisms of impact (homecare staff's knowledge, attitude, skills and support) and context were collected using logbooks, registration forms, checklists, log data and focus group interviews with homecare staff (n = 23) and program trainers (n=4). Results: The program was largely implemented as intended. Homecare staff's average compliance to the program meetings was 73.4%; staff members accepted the program, and particularly valued its practical elements and team approach. They experienced positive changes in their knowledge, attitude and skills about reablement, and perceived social and organizational support from colleagues and team managers to implement reablement. However, the extent to which homecare staff implemented reablement in practice, varied. Perceived facilitators included digital care plans, the organization’s lump sum funding and newly referred clients. Perceived barriers included resistance to change from clients or their social network, complex care situations, time pressure and staff shortages. Conclusions: The program was feasible to implement in the Dutch homecare setting, and was perceived as useful in daily practice. Nevertheless, integrating reablement into homecare staff's working practices remained challenging due to various personal and contextual factors. Future implementation of the program may benefit from minor program adaptations and a more stimulating work environment.
In June 2016, two Dutch SME companies which are active in the area of urban solid waste management approached the International Environmental Sciences department of Avans about the current R&D activities on urban solid waste management in cooperation with the Federal University of Minas Gerais (UFMG) Brazil. The companies had interest in developing activities in Brazil, since they are aware of the great potential for exporting both knowledge and technology. Solid waste poses a major problem in Brazil which affects 200 million residents. The Brazilian municipalities collect around 71 million tons solid municipal waste on a yearly basis and only a tiny percentage of this collected waste gets recycled. As such. the overwhelming majority of the collected urban solid waste goes to landfills. Within the State of Minas Gerais there are 850 towns of which 600 have less than 20.000 residents and are agriculturally oriented. Current organic waste composting practices take place under very poor conditions (pathogens and weeds still remain in the compost) and most often the resulting compost product is not well received by its residential and agricultural consumers. As such there is huge room for improvement. The SME companies work with Avans and UFMG to address these challenges. The joint research team consisting of the two Dutch SME companies and the two Research and educational institutes have defined the following research question: What is the current status of organic solid waste management in Minas Gerais and how can cooperation between Brazil and the Netherlands result in a win-win for both countries? Two individual KIEM VANG proposals have been defined in order to address these challenges. The planned activities are a joint effort with professor R. T. de Vasconcelos Barros of the Universidade Federal de Minas Gerais (UFMG) and are executed within the Living Lab Biobased Brazil program (www.biobasedbrazil.org).
Dutch Cycling Intelligence (DCI) embodies all Dutch cycling knowledge to enhances customer-oriented cycling policy. Based on the data-driven cycle policy enhancement tools and knowledge of the Breda University of Applied Sciences, DCI is the next step in creating a learning community between road authorities, consultants, cycling industry, and knowledge institutes with their students. The DCI consists of three pilars:- Connecting- Accelerating knowledge- Developing knowledgeConnecting There are many stakeholders and specialists in the cycling domain. Specialists with additional knowledge about socio-cultural impacts, geo-special knowledge, and technical traffic solutions. All of these specialists need each other to ensure a perfect balance between the (electric) bicycle, the cyclist and the cycle path in its environment. DCI connects and brings together all kind of different specialists.Accelerating knowledge Many bicycle innovations take place in so-called living labs. Within the living lab, the triple helix collaboration between road authorities the industry and knowledge institutes is key. Being actively involved in state-of-the-art innovations creates an inspiring work and learning environment for students and staff. A practical example of a successful living lab is the cycle superhighway F261 between Tilburg and Waalwijk, where BUAS tested new cycle route signage. Next, the Cycling Lab F58 is created, where the road authorities Breda and Tilburg opened up physical cycling infrastructure for entrepreneurs in the bicycle domain and knowledge institutes to develop e-cycling innovation. The living labs are test environments where pilots can be carried out in practice and an excellent environment for students to conduct scientifically applied research.Developing knowledge Ultimately, data and information must be translated into knowledge. With a team of specialists and partners Breda University of applied sciences developed knowledge and tools to monitor and evaluate cycling behavior. By participating in (inter)national research programs BUAS has become one of the frontrunners in data-driven cycle policy enhancement. In close collaboration with road authorities, knowledge institutes as well as consultants, new insights and answers are developed in an international context. By an active knowledge contribution to the network of the Dutch Cycling Embassy, BUAS aims to strengthen its position and add to the global sustainability challenges. Partners: Province Noord-Brabant, Province Utrecht, Vervoerregio Amsterdam, Dutch Cycling Embassy, Tour de Force, University of Amsterdam, Technical University Eindhoven, Technical University Delft, Utrecht University, DTV Capacity building, Dat.mobility, Goudappel Coffeng, Argaleo, Stratopo, Move.Mobility Clients:Province Noord-Brabant, Province Utrecht, Province Zuid-Holland, Tilburg, Breda, Tour de Force
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.