The COVID–19 pandemic led to local oxygen shortages worldwide. To gain a better understanding of oxygen consumption with different respiratory supportive therapies, we conducted an international multicenter observational study to determine the precise amount of oxygen consumption with high-flow nasal oxygen (HFNO) and with mechanical ventilation. A retrospective observational study was conducted in three intensive care units (ICUs) in the Netherlands and Spain. Patients were classified as HFNO patients or ventilated patients, according to the mode of oxygen supplementation with which a patient started. The primary endpoint was actual oxygen consumption; secondary endpoints were hourly and total oxygen consumption during the first two full calendar days. Of 275 patients, 147 started with HFNO and 128 with mechanical ventilation. Actual oxygen use was 4.9-fold higher in patients who started with HFNO than in patients who started with ventilation (median 14.2 [8.4–18.4] versus 2.9 [1.8–4.1] L/minute; mean difference 5 11.3 [95% CI 11.0–11.6] L/minute; P, 0.01). Hourly and total oxygen consumption were 4.8-fold (P, 0.01) and 4.8-fold (P, 0.01) higher. Actual oxygen consumption, hourly oxygen consumption, and total oxygen consumption are substantially higher in patients that start with HFNO compared with patients that start with mechanical ventilation. This information may help hospitals and ICUs predicting oxygen needs during high-demand periods and could guide decisions regarding the source of distribution of medical oxygen.
MULTIFILE
Background: Ventilation with lower positive end–expiratory pressure (PEEP) may cause loss of lung aeration in critically ill invasively ventilated patients. This study investigated whether a systematic lung ultrasound (LUS) scoring system can detect such changes in lung aeration in a study comparing lower versus higher PEEP in invasively ventilated patients without acute respiratory distress syndrome (ARDS). Methods: Single center substudy of a national, multicenter, randomized clinical trial comparing lower versus higher PEEP ventilation strategy. Fifty–seven patients underwent a systematic 12–region LUS examination within 12 h and between 24 to 48 h after start of invasive ventilation, according to randomization. The primary endpoint was a change in the global LUS aeration score, where a higher value indicates a greater impairment in lung aeration. Results: Thirty–three and twenty–four patients received ventilation with lower PEEP (median PEEP 1 (0–5) cm H2O) or higher PEEP (median PEEP 8 (8–8) cm H2O), respectively. Median global LUS aeration scores within 12 h and between 24 and 48 h were 8 (4 to 14) and 9 (4 to 12) (difference 1 (–2 to 3)) in the lower PEEP group, and 7 (2–11) and 6 (1–12) (difference 0 (–2 to 3)) in the higher PEEP group. Neither differences in changes over time nor differences in absolute scores reached statistical significance. Conclusions: In this substudy of a randomized clinical trial comparing lower PEEP versus higher PEEP in patients without ARDS, LUS was unable to detect changes in lung aeration.
Objective: We determined the prevalences of hyperoxemia and excessive oxygen use, and the epidemiology, ventilation characteristics and outcomes associated with hyperoxemia in invasively ventilated patients with coronavirus disease 2019 (COVID–19). Methods: Post hoc analysis of a national, multicentre, observational study in 22 ICUs. Patients were classified in the first two days of invasive ventilation as ‘hyperoxemic’ or ‘normoxemic’. The co–primary endpoints were prevalence of hyperoxemia (PaO2 > 90 mmHg) and prevalence of excessive oxygen use (FiO2 ≥ 60% while PaO2 > 90 mmHg or SpO2 > 92%). Secondary endpoints included ventilator settings and ventilation parameters, duration of ventilation, length of stay (LOS) in ICU and hospital, and mortality in ICU, hospital, and at day 28 and 90. We used propensity matching to control for observed confounding factors that may influence endpoints. Results: Of 851 COVID–19 patients, 225 (26.4%) were classified as hyperoxemic. Excessive oxygen use occurred in 385 (45.2%) patients. Acute respiratory distress syndrome (ARDS) severity was lowest in hyperoxemic patients. Hyperoxemic patients were ventilated with higher positive end–expiratory pressure (PEEP), while rescue therapies for hypoxemia were applied more often in normoxemic patients. Neither in the unmatched nor in the matched analysis were there differences between hyperoxemic and normoxemic patients with regard to any of the clinical outcomes. Conclusion: In this cohort of invasively ventilated COVID–19 patients, hyperoxemia occurred often and so did excessive oxygen use. The main differences between hyperoxemic and normoxemic patients were ARDS severity and use of PEEP. Clinical outcomes were not different between hyperoxemic and normoxemic patients.