Aims and objectives To gain insight into the perceived added value of a decision support App for district nurses and case managers intended to support a problem assessment and the provision of advices on possible solutions to facilitate ageing in place of people with dementia, and to investigate how they would implement the App in daily practice. Background District nurses and case managers play an important role in facilitating ageing in place of people with dementia (PwD). Detecting practical problems preventing PwD from living at home and advising on possible solutions is complex and challenging tasks for nurses and case managers. To support them with these tasks, a decision support App was developed. Methods A qualitative study using semi‐structured interviews was conducted. A photo‐elicitation method and an interview guide were used to structure the interviews. The data were analysed according to the principles of content analysis. Results In five interviews with seven district nurses and case managers, the added value was described in terms of five themes: (a) providing a broader/better overview of possible solutions; (b) providing a guideline/checklist for problem assessment and advice on solutions; (c) supporting an in‐depth problem assessment; (d) being a support tool for unexperienced case managers/district nurses; and (e) providing up‐to‐date information. The participants regarded the App as complementary to their current work procedure, which they would use in a flexible manner at different stages in the care continuum. Conclusions The participants valued both parts, the problem assessment and the overview of possible solutions. An important requisite for the usage would be that the content is continuously updated. Before implementation of the App can be recommended, an evaluation of its effectiveness regarding decision‐making should be conducted. Relevance to clinical practice This study underpins the need of nurses and case managers for decision support with regard to problem assessment and providing advices on possible solutions to facilitate ageing in place of PwD. There results also show the importance of listening to users experience and their perceived added value of decision support tools as this helps to explain the lack of statistically significant effects on quantitative outcome measure in contrast to a high willingness to use the App in a previous study.
DOCUMENT
Digital innovation in education – as in any other sector – is not only about developing and implementing novel ideas, but also about having these ideas effectively used as well as widely accepted and adopted, so that many students can benefit from innovations improving education. Effectiveness, transferability and scalability cannot be added afterwards; it must be integrated from the start in the design, development and implementation processes, as is proposed in the movement towards evidence-informed practice (EIP). The impact an educational innovation has on the values of various stakeholders is often overlooked. Value Sensitive Design (VSD) is an approach to integrate values in technological design. In this paper we discuss how EIP and VSD may be combined into an integrated approach to digital innovation in education, which we call value-informed innovation. This approach not only considers educational effectiveness, but also incorporates the innovation’s impact on human values, its scalability and transferability to other contexts. We illustrate the integrated approach with an example case of an educational innovation involving digital peer feedback.
DOCUMENT
An overview of innovations in a particular area, for example retail developments in the fashion sector (Van Vliet, 2014), and a subsequent discussion about the probability as to whether these innovations will realise a ‘breakthrough’, has to be supplemented with the question of what the added value is for the customer of such a new service or product. The added value for the customer must not only be clear as to its direct (instrumental or hedonic) incentives but it must also be tested on its merits from a business point of view. This requires a methodology. Working with business models is a method for describing the added value of products/services for customers in a systematic and structured manner. The fact that this is not always simple is evident from the discussions about retail developments, which do not excel in well-grounded business models. If there is talk about business models at all, it is more likely to concern strategic positioning in the market or value chain, or the discussion is about specifics like earning- and distribution-models (see Molenaar, 2011; Shopping 2020, 2014). Here we shall deal with two aspects of business models. First of all we shall look at the different perspectives in the use of business models, ultimately arriving at four distinctive perspectives or methods of use. Secondly, we shall outline the context within which business models operate. As a conclusion we shall distil a research framework from these discussions by presenting an integrated model as the basis for further research into new services and product.
DOCUMENT
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols. Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation. The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol. A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols.Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation.The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol.A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
The seaweed aquaculture sector, aimed at cultivation of macroalgal biomass to be converted into commercial applications, can be placed within a sustainable and circular economy framework. This bio-based sector has the potential to aid the European Union meet multiple EU Bioeconomy Strategy, EU Green Deal and Blue Growth Strategy objectives. Seaweeds play a crucial ecological role within the marine environment and provide several ecosystem services, from the take up of excess nutrients from surrounding seawater to oxygen production and potentially carbon sequestration. Sea lettuce, Ulva spp., is a green seaweed, growing wild in the Atlantic Ocean and North Sea. Sea lettuce has a high nutritional value and is a promising source for food, animal feed, cosmetics and more. Sea lettuce, when produced in controlled conditions like aquaculture, can supplement our diet with healthy and safe proteins, fibres and vitamins. However, at this moment, Sea lettuce is hardly exploited as resource because of its unfamiliarity but also lack of knowledge about its growth cycle, its interaction with microbiota and eventually, possible applications. Even, it is unknown which Ulva species are available for aquaculture (algaculture) and how these species can contribute to a sustainable aquaculture biomass production. The AQULVA project aims to investigate which Ulva species are available in the North Sea and Wadden Sea which can be utilised in onshore aquaculture production. Modern genomic, microbiomic and metabolomic profiling techniques alongside ecophysiological production research must reveal suitable Ulva selections with high nutritional value for sustainable onshore biomass production. Selected Ulva spp lines will be used for production of healthy and safe foods, anti-aging cosmetics and added value animal feed supplements for dairy farming. This applied research is in cooperation with a network of SME’s, Research Institutes and Universities of Applied Science and is liaised with EU initiatives like the EU-COST action “SeaWheat”.