Aim To provide insight into the basic characteristics of decision making in the treatment of symptomatic severe aortic stenosis (SSAS) in Dutch heart centres with specific emphasis on the evaluation of frailty, cognition, nutritional status and physical functioning/functionality in (instrumental) activities of daily living [(I)ADL]. Methods A questionnaire was used that is based on the European and American guidelines for SSAS treatment. The survey was administered to physicians and non-physicians in Dutch heart centres involved in the decision-making pathway for SSAS treatment. Results All 16 Dutch heart centres participated. Before a patient case is discussed by the heart team, heart centres rarely request data from the referring hospital regarding patients’ functionality (n = 5), frailty scores (n = 0) and geriatric consultation (n = 1) as a standard procedure. Most heart centres ‘often to always’ do their own screening for frailty (n = 10), cognition/mood (n = 9), nutritional status (n = 10) and physical functioning/functionality in (I)ADL (n = 10). During heart team meetings data are ‘sometimes to regularly’ available regarding frailty (n = 5), cognition/mood (n = 11), nutritional status (n = 8) and physical functioning/functionality in (I)ADL (n = 10). After assessment in the outpatient clinic patient cases are re-discussed ‘sometimes to regularly’ in heart team meetings (n = 10). Conclusions Dutch heart centres make an effort to evaluate frailty, cognition, nutritional status and physical functioning/functionality in (I)ADL for decision making regarding SSAS treatment. However, these patient data are not routinely requested from the referring hospital and are not always available for heart team meetings. Incorporation of these important data in a structured manner early in the decision-making process may provide additional useful information for decision making in the heart team meeting.
LINK
To study the ways in which compounds can induce adverse effects, toxicologists have been constructing Adverse Outcome Pathways (AOPs). An AOP can be considered as a pragmatic tool to capture and visualize mechanisms underlying different types of toxicity inflicted by any kind of stressor, and describes the interactions between key entities that lead to the adverse outcome on multiple biological levels of organization. The construction or optimization of an AOP is a labor intensive process, which currently depends on the manual search, collection, reviewing and synthesis of available scientific literature. This process could however be largely facilitated using Natural Language Processing (NLP) to extract information contained in scientific literature in a systematic, objective, and rapid manner that would lead to greater accuracy and reproducibility. This would support researchers to invest their expertise in the substantive assessment of the AOPs by replacing the time spent on evidence gathering by a critical review of the data extracted by NLP. As case examples, we selected two frequent adversities observed in the liver: namely, cholestasis and steatosis denoting accumulation of bile and lipid, respectively. We used deep learning language models to recognize entities of interest in text and establish causal relationships between them. We demonstrate how an NLP pipeline combining Named Entity Recognition and a simple rules-based relationship extraction model helps screen compounds related to liver adversities in the literature, but also extract mechanistic information for how such adversities develop, from the molecular to the organismal level. Finally, we provide some perspectives opened by the recent progress in Large Language Models and how these could be used in the future. We propose this work brings two main contributions: 1) a proof-of-concept that NLP can support the extraction of information from text for modern toxicology and 2) a template open-source model for recognition of toxicological entities and extraction of their relationships. All resources are openly accessible via GitHub (https://github.com/ontox-project/en-tox).
An increasing number of patients receive ambulance care without being conveyed to a definitive care provider. This process has been described as complex, challenging, and lacking in guideline support by EMS clinicians. The use of quality- and outcome measures among non-conveyed patients is an understudied phenomenon. Aim To identify current quality- and outcome measures for the general population of non-conveyed patients in order to describe major trends and knowledge gaps.
MULTIFILE