Airport management is often challenged by the task of managing aircraft parking positions most efficiently while complying with environmental regulations and capacity restrictions. Frequently this task is additionally affected by various perturbations, affecting punctuality of airport operations. This paper presents an innovative approach for obtaining an efficient stand assignment considering the stochastic nature of the airport environment and emissions reduction target of the modern air transportation industry. Furthermore, the presented methodology demonstrates how the same procedure of creating a stand assignment can help to identify an emissions mitigation potential. This paper illustrates the application of the presented methodology combined with simulation and demonstrates the impact of the application of Bayesian modeling and metaheuristic optimization for reduction of taxi-related emissions.
DOCUMENT
Predictive models and decision support toolsallow information sharing, common situational awarenessand real-time collaborative decision-making betweenairports and ground transport stakeholders. To supportthis general goal, IMHOTEP has developed a set of modelsable to anticipate the evolution of an airport’s passengerflows within the day of operations. This is to assess theoperational impact of different management measures onthe airport processes and the ground transport system. Twomodels covering the passenger flows inside the terminal andof passengers accessing and egressing the airport have beenintegrated to provide a holistic view of the passengerjourney from door-to-gate and vice versa.This paper describes IMHOTEP’s application at two casestudy airports, Palma de Mallorca (PMI) and London City(LCY), at Proof of Concept (PoC-level) assessing impactand service improvements for passengers, airport operatorsand other key stakeholders.For the first time onemeasurable process is created to open up opportunities forbetter communication across all associated stakeholders.Ultimately the successful implementation will lead to areduction of the carbon footprint of the passenger journeyby better use of existing facilities and surface transportservices, and the delay or omission of additional airportfacility capacities.
DOCUMENT
Mexico City airport is located close to the center ofthe city and is Mexico’s busiest airport which is consideredcongested. One of the consequences of airport congestion areflight delays which in turn decrease costumer’s satisfaction. Airtraffic control has been using a ground delay program as a toolfor alleviating the congestion problems, particularly in the mostcongested slots of the airport. This paper uses a model-basedapproach for analyzing the effectiveness of the ground delayprogram and rules. The results show that however the rulesapplied seem efficient, there is still room for improvement inorder to make the traffic management more efficient.
MULTIFILE
Client: European Institute of Innovation and Technology (EIT) The European Institute of Innovation & Technology, a body of the European Union founded to increase European sustainable growth and competitiveness, has set up a number of Knowledge and Innovation Communities (KIC). One of these Communities is on climate change (Climate-KIC). In 2013, Climate-KIC in the Netherlands approved funding for the IMPACT project (IMPlementation & Adoption of Carbon footprint in Tourism travel packages). This ‘pathfinder’ project aimed to assess the viability of and market for a comprehensive carbon calculator. Such a calculator would enable enterprises in the wider travel industry to determine the carbon dioxide emissions, the main cause for climate change, of tourism products and include ‘carbon management’ in their overall policy and strategy. It is generally expected the cost for fuel and carbon will significantly rise in the near en medium future. The calculator will not only cover flights, but also other transport modes, local tourism activities and accommodations. When this pathfinder project finds interest for carbon management within the sector, we aim to start a much larger follow-up project that will deliver the calculator and tools. The IMPACT project was coordinated by the research institute Alterra Wagenigen UR, the Netherlands. Partners were: - Schiphol Airport Group, Amsterdam, The Netherlands- Technical University Berlin, Germany- TEC Conseil, Marseille, France- TUI Netherlands, Rijswijk, The Netherlands- NHTV Breda University for Applied Sciences, The NetherlandsThe project ran from September 2013 to February 2014.