Airports look alike all over the world. Schiphol has conformed to the patterns of the airport, but its unique design makes it stand out. The book Megastructure Schiphol looks into the history of the Netherlands’ most famous national airport and its sophisticated appearance.Schiphol has grown in fits and starts as a result of ever-expanding traffic in freight and passengers. The area around Schiphol is constantly evolving, yet there is great consistency in the visual aspect of this airport, which can rightly be called a ‘megastructure’. This is not merely due to the efforts of its designers, who have strived to achieve a spectacular simplicity. Other factors, such as its location in a polder and the local planning culture, have also played a role.In Megastructure Schiphol an analysis of its metamorphoses over the past century demonstrates Schiphol’s unique character and its function as a model for other airports.
MULTIFILE
Predictive models and decision support toolsallow information sharing, common situational awarenessand real-time collaborative decision-making betweenairports and ground transport stakeholders. To supportthis general goal, IMHOTEP has developed a set of modelsable to anticipate the evolution of an airport’s passengerflows within the day of operations. This is to assess theoperational impact of different management measures onthe airport processes and the ground transport system. Twomodels covering the passenger flows inside the terminal andof passengers accessing and egressing the airport have beenintegrated to provide a holistic view of the passengerjourney from door-to-gate and vice versa.This paper describes IMHOTEP’s application at two casestudy airports, Palma de Mallorca (PMI) and London City(LCY), at Proof of Concept (PoC-level) assessing impactand service improvements for passengers, airport operatorsand other key stakeholders.For the first time onemeasurable process is created to open up opportunities forbetter communication across all associated stakeholders.Ultimately the successful implementation will lead to areduction of the carbon footprint of the passenger journeyby better use of existing facilities and surface transportservices, and the delay or omission of additional airportfacility capacities.
Airports have undergone a significant digital evolution over the past decades, enhancing efficiency, effectiveness, and user-friendliness through various technological advancements. Initially, airports deployed basic IT solutions as support tools, but with the increasing integration of digital systems, understanding the detailed digital ecosystem behind airports has become crucial. This research aims to classify technological maturity in airports, using the access control process as an example to demonstrate the benefits of the proposed taxonomy. The study highlights the current digital ecosystem and its future trends and challenges, emphasizing the importance of distinguishing between different levels of technological maturity. The role of biometric technology in security access control is examined, highlighting the importance of proper identification and classification. Future research could explore data collection, privacy, and cybersecurity impacts, particularly regarding biometric technologies in Smart Access Level 4.0. The transition from Smart Access Level 3.0 to 4.0 involves process automation and the introduction of AI, offering opportunities to increase efficiency and improve detection capabilities through advanced data analytics. The study underscores the need for global legislative frameworks to regulate and support these technological advancements.
The carbon dioxide emissions of aviation play an important role in many studies and databases. But unfortunately, a detailed and reliable overview of emission factors, and algorithms to calculate these based on factors like seating class, airline type, and aircraft type, did not exist for the Dutch aviation sector. This study calculated such emissions for a sample of over 5000 international flights in 2019 from the 5 Dutch main airports. The data about the flights were gathered from FlightRadar and enriched with seating capacities specific to the airline performing ten flights. in this way, emissions could be assigned to each of the four seating classes (economy, economy-plus, business and first). By aggregating the data to airline types and distance of the flight, algorithms were developed that help researchers and policy-makers to calculate the emissions. Societal IssueThe carbon footprint of Dutch aviation is about 10% of the total footprint. To prevent the world to exceed 1.5 degrees C and enter 'dangerous climate change', emissions need to decline to zero before 2050. This study helps assess and understand current aviation emissions from Dutch airports.Benefit to societyThe results were an update of emissions factors as used by the funding organisation, MilieuCentraal, and the official emission factors list (https://www.co2emissiefactoren.nl/lijst-emissiefactoren/).
INCLAVI will address the skills mismatches that exist in the aviation sector related to the freedom of movement of persons with disabilities and accessibility requirements in line with the EC Strategy for the Rights of Persons with Disabilities 2021-2030.The project accomplishes this through rigorous cooperation between key global industry and labour market actors combined with a world-class HEI and VET consortium. INCLAVI will also further improve the collaboration between HEIs and VET.INCLAVI will design and co-create a new training curriculum utilising expertise from HEI, VET and Industry Actors to support the reskilling of aviation sector employees and key target groups who have a role in the passenger journey of PwDs from door to door. The training will address students and professionals in areas of work related to travel agencies, airports, and airlines.
In the SensEQuake project, the Research Centre for Built Environment NoorderRuimte of Hanze University of Applied Sciences, StabiAlert, Target Holding and NHL Stenden Leeuwarden are investigating the following question:How can we provide relevant and understandable information to support decision makers when an earthquake has occurred?In case of a crisis such as an earthquake, parties such as the provincial government, large company sites, airports or hospitals need information on the scope and severity of the effect of the crisis.Systematic updates of the actual situation on site are of the essence for emergency services. At present only a small amount of the data necessary for this information needed is being collected. And the data that is collected is not processed into relevant and easily understandable information for the decision makers. This project aims to fill this gap.The objective of the project is to integrate the existing sensor technologies into a decision support system, allowing a wider and more immediate use of sensor data for public interest, particularly in crisis times.A heat-map will be produced based on scenario earthquakes and loss (hazard and risk assessment) estimation tools. After running several scenario quakes, critical points in respect to the expected damages and the distribution of existing sensors will be defined. More sensors in critical locations will also be placed to create a high enough resolution.