Paris Charles de Gaulle Airport was the second European airport in terms of traffic in 2019, having transported 76.2 million passengers. Its large infrastructures include four runways, a large taxiway network, and 298 aircraft parking stands (131 contact) among three terminals. With the current pandemic in place, the European air traffic network has declined by −65% flights when compared with 2019 traffic (pre-COVID-19), having a severe negative impact on the aviation industry. More and more often taxiways and runways are used as parking spaces for aircraft as consequence of the drastic decrease in air traffic. Furthermore, due to safety reasons, passenger terminals at many airports have been partially closed. In this work we want to study the effect of the reduction in the physical facilities at airports on airspace and airport capacity, especially in the Terminal Manoeuvring Area (TMA) airspace, and in the airport ground side. We have developed a methodology that considers rare events such as the current pandemic, and evaluates reduced access to airport facilities, considers air traffic management restrictions and evaluates the capacity of airport ground side and airspace. We built scenarios based on real public information on the current use of the airport facilities of Paris Charles de Gaulle Airport and conducted different experiments based on current and hypothetical traffic recovery scenarios. An already known optimization metaheuristic was implemented for optimizing the traffic with the aim of avoiding airspace conflicts and avoiding capacity overloads on the ground side. The results show that the main bottleneck of the system is the terminal capacity, as it starts to become congested even at low traffic (35% of 2019 traffic). When the traffic starts to increase, a ground delay strategy is effective for mitigating airspace conflicts; however, it reveals the need for additional runways
DOCUMENT
Airport capacity, expressed as the maximum number of air traffic movements that can be accommodated during a given period of time under given conditions, has become a hard constraint to the air transportation, due to the scarce amount of resources on the ground and restrictions in the airspace. Usually the problem of capacity at airports is studied separating airspace operations from ground operations, but it is evident that the two areas are tied to each other. This work aims at developing a simulation model that takes into account both airspace and ground operations. The approach used is a divide and conquer approach, which allows the combination of four different models. The four models refer to the airside, and airspace operations. This approach allows to evaluate the system from diffrent angles depending on the scope of the study, the results show the analytic potential of this approach.
DOCUMENT
The constant growth of air traffic, especially in Europe, is putting pressure on airports, which, in turn, are suffering congestion problems. The airspace surrounding airport, terminal manoeuvring area (TMA), is particularly congested, since it accommodates all the converging traffic to and from airports. Besides airspace, airport ground capacity is also facing congestion problems, as the inefficiencies coming from airspace operations are transferred to airport ground and vice versa. The main consequences of congestion at airport airspace and ground, is given by the amount of delay generated, which is, in turn, transferred to other airports within the network. Congestion problems affect also the workload of air traffic controllers that need to handle this big amount of traffic.This thesis deals with the optimization of the integrated airport operations, considering the airport from a holistic point of view, by including operations such as airspace and ground together. Unlike other studies in this field of research, this thesis contributes by supporting the decisions of air traffic controllers regarding aircraft sequencing and by mitigating congestion on the airport ground area. The airport ground operations and airspace operations can be tackled with two different levels of abstractions, macroscopic or microscopic, based on the time-frame for decision-making purposes. In this thesis, the airport operations are modeled at a macroscopic level.The problem is formulated as an optimization model by identifying an objective function that considers the amount of conflicts in the airspace and capacity overload on the airport ground; constraints given by regulations on separation minima between consecutive aircraft in the airspace and on the runway; decision variables related to aircraft entry time and entry speed in the airspace, landing runway and departing runway choice and pushback time. The optimization model is solved by implementing a sliding window approach and an adapted version of the metaheuristic simulated annealing. Uncertainty is included in the operations by developing a simulation model and by including stochastic variables that represent the most significant sources of uncertainty when considering operations at a macroscopic level, such as deviation from the entry time in the airspace, deviation in the average taxi time and deviation in the pushback time. In this thesis, optimization and simulation techniques are combined together by developing two methods that aim at improving the solution robustness and feasibility. The first method acts as a validation tool for the optimized solution, and it improves the robustness of solution by iteratively fine-tuning some of the optimization model input parameters. The second method embeds the optimization in a simulation environment by taking full advantage of the sliding window approach and creating a loop for a continuous improvement of the optimized solution at each window of the sliding window approach. Both methods prove to be effective by improving the performance, lowering the total amount of conflicts up to 23.33% for the first method and up to 11.2% for the second method, however, in contrast to the deterministic method, the two methods they are not able to achieve a conflict-free scenario due to the effect of uncertainty.In general, the research conducted in this thesis highlights that uncertainty is a factor that affects to a large extent the feasibility of optimized solution when applied to real-world instances, and it, moreover, confirms that using simulation together with optimization has the potentiality toivdeal with uncertainty. The framework developed can be potentially applied to similar problems and different optimization solving methods can be adapted to it.Keywords: Optimization, Simulation, Integrated airport operations, Uncertainty
MULTIFILE
In this paper, a general approach for modeling airport operations is presented. Airport operations have been extensively studied in the last decades ranging from airspace, airside and landside operations. Due to the nature of the system, simulation techniques have emerged as a powerful approach for dealing with the variability of these operations. However, in most of the studies, the different elements are studied in an individual fashion. The aim of this paper, is to overcome this limitation by presenting a methodological approach where airport operations are modeled together, such as airspace and airside. The contribution of this approach is that the resolution level for the different elements is similar therefore the interface issues between them is minimized. The framework can be used by practitioners for simulating complex systems like airspace-airside operations or multi-airport systems. The framework is illustrated by presenting a case study analyzed by the authors.
DOCUMENT
In this paper, a general approach for modeling airport operations is presented. Airport operations have been extensively studied in the last decades ranging from airspace, airside and landside operations. Due to the nature of the system, simulation techniques have emerged as a powerful approach for dealing with the variability of these operations. However, in most of the studies, the different elements are studied in an individual fashion. The aim of this paper, is to overcome this limitation by presenting a methodological approach where airport operations are modeled together, such as airspace and airside. The contribution of this approach is that the resolution level for the different elements is similar therefore the interface issues between them is minimized. The framework can be used by practitioners for simulating complex systems like airspace-airside operations or multi-airport systems. The framework is illustrated by presenting a case study analyzed by the authors.
DOCUMENT
Air transportation has grown in an unexpected way during last decades and is expected to increase even more in the next years. Traffic growth tendencies forecast an expansion in the demand and greater aviation connectivity, but also higher workload to the different airspace users, especially for airport and services. Therefore, it is essential to employ strategies designed to use efficiently valuable corporate resource. Airport authorities around the world are investing in large capital projects, including new or improved runways, terminal expansions, and entirely new airports. However, this effort is sometimes limited due to their geographic location. In this work, two main objectives are pursued: first, to highlight the importance of the industry by exposing the current situation and future trends all over the world focusing in the Mexican industry; and second, to introduce a simulation model which can be used as a decision making tool for the upcoming demand. The analysis of the scenarios illustrates how to develop strategies to cope with the different airspace user's needs.
MULTIFILE
Airports and surrounding airspaces are limited in terms of capacity and represent the major bottleneck in the air traffic management system. This paper proposes a two level model to tackle the integrated optimization problem of arrival, departure, and surface operations. The macroscopic level considers the terminal airspace management for arrivals and departures and airport capacity management, while the microscopic level optimizes surface operations and departure runway scheduling. An adapted simulated annealing heuristic combined with a time decomposition approach is proposed to solve the corresponding problem. Computational experiments performed on real-world case studies of Paris Charles De-Gaulle airport, show the benefits of this integrated approach.
DOCUMENT
Airport management is frequently faced with a problem of assigning flights to available stands and parking positions in the most economical way that would comply with airline policies and suffer minimum changes due to any operational disruptions. This work presents a novel approach to the most common airport problem – efficient stand assignment. The described algorithm combines benefits of data-mining and metaheuristic approaches and generates qualitative solutions, aware of delay trends and airport performance perturbations. The presented work provides promising solutions from the starting moments of computation, in addition, it delivers to the airport stakeholders delay-aware stand assignment, and facilitates the estimation of risk and consequences of any operational disruptions on the slot adherence.
MULTIFILE
This paper presents an innovative approach that combines optimization and simulation techniques for solving scheduling problems under uncertainty. We introduce an Opt–Sim closed-loop feedback framework (Opt–Sim) based on a sliding-window method, where a simulation model is used for evaluating the optimized solution with inherent uncertainties for scheduling activities. The specific problem tackled in this paper, refers to the airport capacity management under uncertainty, and the Opt–Sim framework is applied to a real case study (Paris Charles de Gaulle Airport, France). Different implementations of the Opt–Sim framework were tested based on: parameters for driving the Opt–Sim algorithmic framework and parameters for riving the optimization search algorithm. Results show that, by applying the Opt–Sim framework, potential aircraft conflicts could be reduced up to 57% over the non-optimized scenario. The proposed optimization framework is general enough so that different optimization resolution methods and simulation paradigms can be implemented for solving scheduling problems in several other fields.
DOCUMENT
This research aims to find relevant evidence on whether there is a link between air capacity management (ACM) optimization and airline operations, also considering the airline business model perspective. The selected research strategy includes a case study based on Paris Charles de Gaulle Airport to measure the impact of ACM optimization variables on airline operations. For the analysis we use historical data which allows us to evaluate to what extent the new schedule obtained from the optimized scenario disrupts airline planned operations. The results of this study indicate that ACM optimization has a substantial impact on airline operations. Moreover, the airlines were categorized according to their business model, so that the results of this study revealed which category was the most affected. In detail, this study revealed that, on the one hand, Full-Service Cost Carriers (FSCCs) were the most impacted and the presented ACM optimization variables had a severe impact on slot allocation (approximately 50% of slots lost), fuel burn accounted as extra flight time in the airspace (approximately 12 min per aircraft) and disrupted operations (approximately between 31% and 39% of the preferred assigned runways were changed). On the other hand, the comparison shows that the implementation of an optimization model for managing the airport capacity, leads to a more balanced usage of runways and saves between 7% and 8% of taxi time (which decreases fuel emission).
MULTIFILE