People tend to be hesitant toward algorithmic tools, and this aversion potentially affects how innovations in artificial intelligence (AI) are effectively implemented. Explanatory mechanisms for aversion are based on individual or structural issues but often lack reflection on real-world contexts. Our study addresses this gap through a mixed-method approach, analyzing seven cases of AI deployment and their public reception on social media and in news articles. Using the Contextual Integrity framework, we argue that most often it is not the AI technology that is perceived as problematic, but that processes related to transparency, consent, and lack of influence by individuals raise aversion. Future research into aversion should acknowledge that technologies cannot be extricated from their contexts if they aim to understand public perceptions of AI innovation.
LINK
The user experience of our daily interactions is increasingly shaped with the aid of AI, mostly as the output of recommendation engines. However, it is less common to present users with possibilities to navigate or adapt such output. In this paper we argue that adding such algorithmic controls can be a potent strategy to create explainable AI and to aid users in building adequate mental models of the system. We describe our efforts to create a pattern library for algorithmic controls: the algorithmic affordances pattern library. The library can aid in bridging research efforts to explore and evaluate algorithmic controls and emerging practices in commercial applications, therewith scaffolding a more evidence-based adoption of algorithmic controls in industry. A first version of the library suggested four distinct categories of algorithmic controls: feeding the algorithm, tuning algorithmic parameters, activating recommendation contexts, and navigating the recommendation space. In this paper we discuss these and reflect on how each of them could aid explainability. Based on this reflection, we unfold a sketch for a future research agenda. The paper also serves as an open invitation to the XAI community to strengthen our approach with things we missed so far.
MULTIFILE
In this paper, we explore the design of web-based advice robots to enhance users' confidence in acting upon the provided advice. Drawing from research on algorithm acceptance and explainable AI, we hypothesise four design principles that may encourage interactivity and exploration, thus fostering users' confidence to act. Through a value-oriented prototype experiment and value-oriented semi-structured interviews, we tested these principles, confirming three of them and identifying an additional principle. The four resulting principles: (1) put context questions and resulting advice on one page and allow live, iterative exploration, (2) use action or change oriented questions to adjust the input parameters, (3) actively offer alternative scenarios based on counterfactuals, and (4) show all options instead of only the recommended one(s), appear to contribute to the values of agency and trust. Our study integrates the Design Science Research approach with a Value Sensitive Design approach.
MULTIFILE
Technology has a major impact on the way nurses work. Data-driven technologies, such as artificial intelligence (AI), have particularly strong potential to support nurses in their work. However, their use also introduces ambiguities. An example of such a technology is AI-driven lifestyle monitoring in long-term care for older adults, based on data collected from ambient sensors in an older adult’s home. Designing and implementing this technology in such an intimate setting requires collaboration with nurses experienced in long-term and older adult care. This viewpoint paper emphasizes the need to incorporate nurses and the nursing perspective into every stage of designing, using, and implementing AI-driven lifestyle monitoring in long-term care settings. It is argued that the technology will not replace nurses, but rather act as a new digital colleague, complementing the humane qualities of nurses and seamlessly integrating into nursing workflows. Several advantages of such a collaboration between nurses and technology are highlighted, as are potential risks such as decreased patient empowerment, depersonalization, lack of transparency, and loss of human contact. Finally, practical suggestions are offered to move forward with integrating the digital colleague
DOCUMENT
In dit abstract wordt de ontwikkeling van een online onderwijsmodule beschreven gericht op eHealth voor leefstijlverbetering
MULTIFILE
The aeronautical industry is still under expansion in spite of the problems it is facing due to the increase in oil prices, limited capacity, and novel regulations. The expansion trends translate into problems at different locations within an airport system and are more evident when the resources to cope with the demand are limited or are reaching to theirs limits. In the check-in areas they are appreciated as excessive waiting times which in turn are appreciated by the customers as bad service levels. The article presents a novel methodology that combines an evolutionary algorithm and simulation in order to give the best results taking into account not only the mandatory hard and soft rules determined by the internal policies of an airport terminal but also the quality indicators which are very difficult to include using an abstract representation. The evolutionary algorithm is developed to satisfy the different mandatory restrictions for the allocation problem such as minimum and maximum number of check-in desks per flight, load balance in the check-in islands, opening times of check-in desks and other restrictions imposed by the level of service agreement. Once the solutions are obtained, a second evaluation is performed using a simulation model of the terminal that takes into account the stochastic aspects of the problem such as arriving profiles of the passengers, opening times physical configurations of the facility among other with the objective to determine which allocation is the most efficient in real situations in order to maintain the quality indicators at the desired level.
DOCUMENT
Over the past few years, there has been an explosion of data science as a profession and an academic field. The increasing impact and societal relevance of data science is accompanied by important questions that reflect this development: how can data science become more responsible and accountable while also responding to key challenges such as bias, fairness, and transparency in a rigorous and systematic manner? This Patterns special collection has brought together research and perspective from academia, the public and the private sector, showcasing original research articles and perspectives pertaining to responsible and accountable data science.
MULTIFILE
There are three volumes in this body of work. In volume one, we lay the foundation for a general theory of organizing. We propose that organizing is a continuous process of ongoing mutual or reciprocal influence between objects (e.g., human actors) in a field, whereby a field is infinite and connects all the objects in it much like electromagnetic fields influence atomic and molecular charged objects or gravity fields influence inanimate objects with mass such as planets and stars. We use field theory to build what we now call the Network Field Model. In this model, human actors are modeled as pointlike objects in the field. Influence between and investments in these point-like human objects are explained as energy exchanges (potential and kinetic) which can be described in terms of three different types of capital: financial (assets), human capital (the individual) and social (two or more humans in a network). This model is predicated on a field theoretical understanding about the world we live in. We use historical and contemporaneous examples of human activity and describe them in terms of the model. In volume two, we demonstrate how to apply the model. In volume 3, we use experimental data to prove the reliability of the model. These three volumes will persistently challenge the reader’s understanding of time, position and what it means to be part of an infinite field. http://dx.doi.org/10.5772/intechopen.99709
DOCUMENT
This study presents an automated method for detecting and measuring the apex head thickness of tomato plants, a critical phenotypic trait associated with plant health, fruit development, and yield forecasting. Due to the apex's sensitivity to physical contact, non-invasive monitoring is essential. This paper addresses the demand for automated, contactless systems among Dutch growers. Our approach integrates deep learning models (YOLO and Faster RCNN) with RGB-D camera imaging to enable accurate, scalable, and non-invasive measurement in greenhouse environments. A dataset of 600 RGB-D images captured in a controlled greenhouse, was fully preprocessed, annotated, and augmented for optimal training. Experimental results show that YOLOv8n achieved superior performance with a precision of 91.2 %, recall of 86.7 %, and an Intersection over Union (IoU) score of 89.4 %. Other models, such as YOLOv9t, YOLOv10n, YOLOv11n, and Faster RCNN, demonstrated lower precision scores of 83.6 %, 74.6 %, 75.4 %, and 78 %, respectively. Their IoU scores were also lower, indicating less reliable detection. This research establishes a robust, real-time method for precision agriculture through automated apex head thickness measurement.
DOCUMENT
Background. Violent criminal offenders with personality disorders (PD’s) can cause immense harm, but are often deemed untreatable. This study aimed to conduct a randomized clinical trial to test the effectiveness of long-term psychotherapy for rehabilitating offenders with PDs. Methods. We compared schema therapy (ST), an evidence-based psychotherapy for PDs, to treatment-as-usual (TAU) at eight high-security forensic hospitals in the Netherlands. Patients in both conditions received multiple treatment modalities and differed only in the individual, study-specific therapy they received. One-hundred-three male offenders with antisocial, narcissistic, borderline, or paranoid PDs, or Cluster B PD-not-otherwise specified, were assigned to 3 years of ST or TAU and assessed every 6 months. Primary outcomes were rehabilitation, involving gradual reintegration into the community, and PD symptoms. Results. Patients in both conditions showed moderate to large improvements in outcomes. ST was superior to TAU on both primary outcomes – rehabilitation (i.e. attaining supervised and unsupervised leave) and PD symptoms – and six of nine secondary outcomes, with small to moderate advantages over TAU. ST patients moved more rapidly through rehabilitation (supervised leave, treatment*time: F(5308) = 9.40, p < 0.001; unsupervised leave, treatment*- time: F(5472) = 3.45, p = 0.004), and showed faster improvements on PD scales (treatment*- time: t(1387) = −2.85, p = 0.005). Conclusions. These findings contradict pessimistic views on the treatability of violent offenders with PDs, and support the effectiveness of long-term psychotherapy for rehabilitating these patients, facilitating their re-entry into the community
DOCUMENT