Due to a lack of transparency in both algorithm and validation methodology, it is diffcult for researchers and clinicians to select the appropriate tracker for their application. The aim of this work is to transparently present an adjustable physical activity classification algorithm that discriminates between dynamic, standing, and sedentary behavior. By means of easily adjustable parameters, the algorithm performance can be optimized for applications using different target populations and locations for tracker wear. Concerning an elderly target population with a tracker worn on the upper leg, the algorithm is optimized and validated under simulated free-living conditions. The fixed activity protocol (FAP) is performed by 20 participants; the simulated free-living protocol (SFP) involves another 20. Data segmentation window size and amount of physical activity threshold are optimized. The sensor orientation threshold does not vary. The validation of the algorithm is performed on 10 participants who perform the FAP and on 10 participants who perform the SFP. Percentage error (PE) and absolute percentage error (APE) are used to assess the algorithm performance. Standing and sedentary behavior are classified within acceptable limits (+/- 10% error) both under fixed and simulated free-living conditions. Dynamic behavior is within acceptable limits under fixed conditions but has some limitations under simulated free-living conditions. We propose that this approach should be adopted by developers of activity trackers to facilitate the activity tracker selection process for researchers and clinicians. Furthermore, we are convinced that the adjustable algorithm potentially could contribute to the fast realization of new applications.
DOCUMENT
This article interrogates platform-specific bias in the contemporary algorithmic media landscape through a comparative study of the representation of pregnancy on the Web and social media. Online visual materials such as social media content related to pregnancy are not void of bias, nor are they very diverse. The case study is a cross-platform analysis of social media imagery for the topic of pregnancy, through which distinct visual platform vernaculars emerge. The authors describe two visualization methods that can support comparative analysis of such visual vernaculars: the image grid and the composite image. While platform-specific perspectives range from lists of pregnancy tips on Pinterest to pregnancy information and social support systems on Twitter, and pregnancy humour on Reddit, each of the platforms presents a predominantly White, able-bodied and heteronormative perspective on pregnancy.
DOCUMENT
People tend to be hesitant toward algorithmic tools, and this aversion potentially affects how innovations in artificial intelligence (AI) are effectively implemented. Explanatory mechanisms for aversion are based on individual or structural issues but often lack reflection on real-world contexts. Our study addresses this gap through a mixed-method approach, analyzing seven cases of AI deployment and their public reception on social media and in news articles. Using the Contextual Integrity framework, we argue that most often it is not the AI technology that is perceived as problematic, but that processes related to transparency, consent, and lack of influence by individuals raise aversion. Future research into aversion should acknowledge that technologies cannot be extricated from their contexts if they aim to understand public perceptions of AI innovation.
LINK
Albeit the widespread application of recommender systems (RecSys) in our daily lives, rather limited research has been done on quantifying unfairness and biases present in such systems. Prior work largely focuses on determining whether a RecSys is discriminating or not but does not compute the amount of bias present in these systems. Biased recommendations may lead to decisions that can potentially have adverse effects on individuals, sensitive user groups, and society. Hence, it is important to quantify these biases for fair and safe commercial applications of these systems. This paper focuses on quantifying popularity bias that stems directly from the output of RecSys models, leading to over recommendation of popular items that are likely to be misaligned with user preferences. Four metrics to quantify popularity bias in RescSys over time in dynamic setting across different sensitive user groups have been proposed. These metrics have been demonstrated for four collaborative filteri ng based RecSys algorithms trained on two commonly used benchmark datasets in the literature. Results obtained show that the metrics proposed provide a comprehensive understanding of growing disparities in treatment between sensitive groups over time when used conjointly.
DOCUMENT
This paper describes the concept of a new algorithm to control an Unmanned Aerial System (UAS) for accurate autonomous indoor flight. Inside a greenhouse, Global Positioning System (GPS) signals are not reliable and not accurate enough. As an alternative, Ultra Wide Band (UWB) is used for localization. The noise is compensated by combining the UWB with the delta position signal from a novel optical flow algorithm through a Kalman Filter (KF). The end result is an accurate and stable position signal with low noise and low drift.
DOCUMENT
Challenges that surveys are facing are increasing data collection costs and declining budgets. During the past years, many surveys at Statistics Netherlands were redesigned to reduce costs and to increase or maintain response rates. From 2018 onwards, adaptive survey design has been applied in several social surveys to produce more accurate statistics within the same budget. In previous years, research has been done into the effect on quality and costs of reducing the use of interviewers in mixed-mode surveys starting with internet observation, followed by telephone or face-to-face observation of internet nonrespondents. Reducing follow-ups can be done in different ways. By using stratified selection of people eligible for follow-up, nonresponse bias may be reduced. The main decisions to be made are how to divide the population into strata and how to compute the allocation probabilities for face-to-face and telephone observation in the different strata. Currently, adaptive survey design is an option in redesigns of social surveys at Statistics Netherlands. In 2018 it has been implemented in the Health Survey and the Public Opinion Survey, in 2019 in the Life Style Monitor and the Leisure Omnibus, in 2021 in the Labour Force Survey, and in 2022 it is planned for the Social Coherence Survey. This paper elaborates on the development of the adaptive survey design for the Labour Force Survey. Attention is paid to the survey design, in particular the sampling design, the data collection constraints, the choice of the strata for the adaptive design, the calculation of follow-up fractions by mode of observation and stratum, the practical implementation of the adaptive design, and the six-month parallel design with corresponding response results.
DOCUMENT
Completeness of data is vital for the decision making and forecasting on Building Management Systems (BMS) as missing data can result in biased decision making down the line. This study creates a guideline for imputing the gaps in BMS datasets by comparing four methods: K Nearest Neighbour algorithm (KNN), Recurrent Neural Network (RNN), Hot Deck (HD) and Last Observation Carried Forward (LOCF). The guideline contains the best method per gap size and scales of measurement. The four selected methods are from various backgrounds and are tested on a real BMS and meteorological dataset. The focus of this paper is not to impute every cell as accurately as possible but to impute trends back into the missing data. The performance is characterised by a set of criteria in order to allow the user to choose the imputation method best suited for its needs. The criteria are: Variance Error (VE) and Root Mean Squared Error (RMSE). VE has been given more weight as its ability to evaluate the imputed trend is better than RMSE. From preliminary results, it was concluded that the best K‐values for KNN are 5 for the smallest gap and 100 for the larger gaps. Using a genetic algorithm the best RNN architecture for the purpose of this paper was determined to be Gated Recurrent Units (GRU). The comparison was performed using a different training dataset than the imputation dataset. The results show no consistent link between the difference in Kurtosis or Skewness and imputation performance. The results of the experiment concluded that RNN is best for interval data and HD is best for both nominal and ratio data. There was no single method that was best for all gap sizes as it was dependent on the data to be imputed.
DOCUMENT
Research studies and recruitment processes often rely on psychometric instruments to profile respondents with regards to their ethical orientation. Completing such questionnaires can be tedious and is prone to self-presentation bias. Noting how video games often expose players to complex plots, filled with dilemmas and morally dubious options, the opportunity emerges to evaluate player’s moral orientation by analysing their in-game behaviour. In order to explore the feasibility of such an approach, we examine how users’ moral judgment correlates with choices they make in non-linear narratives, frequently present in video games. An interactive narrative presenting several moral dilemmas was created. An initial user study (N = 80) revealed only weak correlations between the users’ choices and their ethical inclinations in all ethical scales. However, by training a genetic algorithm on this data set to quantify the influence of each branch on recognising moral inclination we found a strong positive correlation between choice behaviour and self-reported ethical inclinations on a second independent group of participants (N = 20). The contribution of this work is to demonstrate how genetic algorithms can be applied in interactive stories to profile users’ ethical stance.
LINK
Purpose: The purpose of this study was to validate optimized algorithm parameter settings for step count and physical behavior for a pocket worn activity tracker in older adults during ADL. Secondly, for a more relevant interpretation of the results, the performance of the optimized algorithm was compared to three reference applications Methods: In a cross-sectional validation study, 20 older adults performed an activity protocol based on ADL with MOXMissActivity versus MOXAnnegarn, activPAL, and Fitbit. The protocol was video recorded and analyzed for step count and dynamic, standing, and sedentary time. Validity was assessed by percentage error (PE), absolute percentage error (APE), Bland-Altman plots and correlation coefficients. Results: For step count, the optimized algorithm had a mean APE of 9.3% and a correlation coefficient of 0.88. The mean APE values of dynamic, standing, and sedentary time were 15.9%, 19.9%, and 9.6%, respectively. The correlation coefficients were 0.55, 0.91, and 0.92, respectively. Three reference applications showed higher errors and lower correlations for all outcome variables. Conclusion: This study showed that the optimized algorithm parameter settings can more validly estimate step count and physical behavior in older adults wearing an activity tracker in the trouser pocket during ADL compared to reference applications.
DOCUMENT
Completeness of data is vital for the decision making and forecasting on Building Management Systems (BMS) as missing data can result in biased decision making down the line. This study creates a guideline for imputing the gaps in BMS datasets by comparing four methods: K Nearest Neighbour algorithm (KNN), Recurrent Neural Network (RNN), Hot Deck (HD) and Last Observation Carried Forward (LOCF). The guideline contains the best method per gap size and scales of measurement. The four selected methods are from various backgrounds and are tested on a real BMS and metereological dataset. The focus of this paper is not to impute every cell as accurately as possible but to impute trends back into the missing data. The performance is characterised by a set of criteria in order to allow the user to choose the imputation method best suited for its needs. The criteria are: Variance Error (VE) and Root Mean Squared Error (RMSE). VE has been given more weight as its ability to evaluate the imputed trend is better than RMSE. From preliminary results, it was concluded that the best K‐values for KNN are 5 for the smallest gap and 100 for the larger gaps. Using a genetic algorithm the best RNN architecture for the purpose of this paper was determined to be GatedRecurrent Units (GRU). The comparison was performed using a different training dataset than the imputation dataset. The results show no consistent link between the difference in Kurtosis or Skewness and imputation performance. The results of the experiment concluded that RNN is best for interval data and HD is best for both nominal and ratio data. There was no single method that was best for all gap sizes as it was dependent on the data to be imputed.
MULTIFILE