Recommender systems are widely used in today’s society, but many of them do not meet users’ needs and therefore fail to reach their full potential. Without careful consideration, such systems can interfere with the natural decision-making process, resulting in the disregard for recommendations provided. Therefore, it is vital to take into account multiple factors, including expertise, time and risk associated with decisions, as well as the system’s context to identify suitable affordances. Furthermore, it is important to consider the algorithmic and digital literacy of the users. This analysis could reveal innovative design opportunities, like combining a recommender system with a digital agent. As a result, it may meet interpersonal needs and facilitate a more natural interaction with the system. Implementing this combination in a digital marketplace could be a promising way to empower users towards an independent life.
LINK
Algorithmic affordances are defined as user interaction mechanisms that allow users tangible control over AI algorithms, such as recommender systems. Designing such algorithmic affordances, including assessing their impact, is not straightforward and practitioners state that they lack resources to design adequately for interfaces of AI systems. This could be amended by creating a comprehensive pattern library of algorithmic affordances. This library should provide easy access to patterns, supported by live examples and research on their experiential impact and limitations of use. The Algorithmic Affordances in Recommender Interfaces workshop aimed to address key challenges related to building such a pattern library, including pattern identification features, a framework for systematic impact evaluation, and understanding the interaction between algorithmic affordances and their context of use, especially in education or with users with a low algorithmic literacy. Preliminary solutions were proposed for these challenges.
LINK
This exploratory study investigates the rationale behind categorizing algorithmic controls, or algorithmic affordances, in the graphical user interfaces (GUIs) of recommender systems. Seven professionals from industry and academia took part in an open card sorting activity to analyze 45 cards with examples of algorithmic affordances in recommender systems’ GUIs. Their objective was to identify potential design patterns including features on which to base these patterns. Analyzing the group discussions revealed distinct thought processes and defining factors for design patterns that were shared by academic and industry partners. While the discussions were promising, they also demonstrated a varying degree of alignment between industry and academia when it came to labelling the identified categories. Since this workshop is part of the preparation for creating a design pattern library of algorithmic affordances, and since the library aims to be useful for both industry and research partners, further research into design patterns of algorithmic affordances, particularly in terms of labelling and description, is required in order to establish categories that resonate with all relevant parties
LINK