Purpose Building services technologies such as home automation systems and remote monitoring are increasingly used to support people in their own homes. In order for these technologies to be fully appreciated by the endusers (mainly older care recipients, informal carers and care professionals), user needs should be understood1,2. In other words, supply and demand should match. Steele et al.3 state that there is a shortage of studies exploring perceptions of older users towards technology and the acceptance or rejection thereof. This paper presents an overview of user needs in relation to ambient assisted living (AAL) projects, which aim to support ageing-in-place in The Netherlands. Method A literature survey was made of Dutch AAL projects, focusing on user needs. A total of 7 projects concerned with older persons, with and without dementia, were included in the overview. Results & Discussion By and large technology is considered to be a great support in enabling people to age-in-place. Technology is, therefore, accepted and even embraced by many of the end-users and their relatives. Technology used for safety, security, and emergency response is most valued. Involvement of end-users improves the successful implementation of ambient technology. This is also true for family involvement in the case of persons with dementia. Privacy is mainly a concern for care professionals. This group is also key to successful implementation, as they need to be able to work with the technology and provide information to the end-users. Ambient technologies should be designed in an unobtrusive way, in keeping with indoor design, and be usable by persons with sensory of physical impairments. In general, user needs, particularly the needs of informal carers and care professionals, are an understudied topic. These latter two groups play an important role in implementation and acceptance among care recipients. They should, therefore, deserve more attention from the research community.
LINK
Technology can assist older adults to remain living in the community. Within the realm of information and communication technologies, smart homes are drifting toward the concept of ambient assisted living (AAL). AAL-systems are more responsive to user needs and patterns of living, fostering physical activity for a healthier lifestyle, and capturing behaviours for prevention and future assistance. This study provides an overview of the design-requirements and expectations towards AAL-technologies that are formulated by the end-users, their relatives and health care workers, with a primary focus on health care in The Netherlands. The results concern the motivation for use of technology, requirements to the design, implementation, privacy and ethics. More research is required in terms of the actual needs of older users without dementia and their carers, and on AAL in general as some of the work included concerns less sophisticated smart home technology
DOCUMENT
This paper describes a participatory design-oriented study of an ambient assisted living system for monitoring the daily activities of elderly residents. The work presented addresses these questions 1) What daily activities the elderly participants like to be monitored, 2) With whom they would want to share this monitored data and 3) How a monitoring system for the elderly should be designed. For this purpose, this paper discusses the study results and participatory design techniques used to exemplify and understand desired ambient-assisted living scenarios and information sharing needs. Particularly, an interactive dollhouse is presented as a method for including the elderly in the design and requirements gathering process for residential monitoring. The study results indicate the importance of exemplifying ambient-assisted living scenarios to involve the elderly and so to increase acceptance and utility of such systems. The preliminary studies presented show that the participants were willing to have most of their daily activities monitored. However, they mostly wanted to keep control over their own data and share this information with medical specialists and particularly not with their fellow elderly neighbours.
MULTIFILE
Wireless sensor networks are becoming popular in the field of ambient assisted living. In this paper we report our study on the relationship between a functional health metric and features derived from the sensor data. Sensor systems are installed in the houses of nine people who are also quarterly visited by an occupational therapist for functional health assessments. Different features are extracted and these are correlated with a metric of functional health (the AMPS). Though the sample is small, the results indicate that some features are better in describing the functional health in the population, but individual differences should also be taken into account when developing a sensor system for functional health assessment.
DOCUMENT
The project discussed in this paper is aimed at increasing people’s understanding of the existence and desired workings of ambient technology in the home by demonstrating its potential. For this purpose, an interactive dollhouse is presented. The dollhouse, a miniature model of a sensor-equipped home, was developed and used to engage elderly users in the design of an ambient monitoring system. This paper explains the design of the interactive dollhouse and the ways it was used as an elderly-centered design method for increasing understanding of the desired workings of ambient monitoring in the home.
DOCUMENT
Ambient intelligence technologies are a means to support ageing-in-place by monitoring clients in the home. In this study, monitoring is applied for the purpose of raising an alarm in an emergency situation, and thereby, providing an increased sense of safety and security. Apart from these technological solutions, there are numerous environmental interventions in the home environment that can support people to age-in-place. The aim of this study was to investigate the needs and motives, related to ageing-in-place, of the respondents receiving ambient intelligence technologies, and to investigate whether, and how, these technologies contributed to aspects of ageing-in-place. This paper presents the results of a qualitative study comprised of interviews and observations of technology and environmental interventions in the home environment among 18 community-dwelling older adults with a complex demand for care.
DOCUMENT
We present a method for measuring gait velocity of older adults using data from existing ambient sensor networks. Gait velocity is an important predictor of fall risk and functional health. In contrast to other approaches that use specific sensors or sensor configurations, our method imposes no constraints on the elderly. We studied different probabilistic models for the modeling of the duration and the distance of the indoor walking paths. Experiments are carried out on 27 months of sensor data and include repeated assessments from an occupational therapist. We showed that gait velocities can be measured with low variance and correlate with most assessments. The advantage of our monitoring system is that because of the continuous measurements, clearer trends can be extracted than from incidental assessments of the occupational therapist.
DOCUMENT
This paper describes the approach used to identify elderly people’s needs and attitudes towards applying ambient sensor systems for monitoring daily activities in the home. As elderly are typically unfamiliar with such ambient technology, interactive tools for explicating sensor monitoring –an interactive dollhouse and iPad applications for displaying live monitored sensor activity data– were developed and used for this study. Furthermore, four studies conducted by occupational therapists with more than 60 elderly participants –including questionnaires (n=41), interviews (n=6), user sessions (n=14) and field studies (n=2)– were conducted. The experiences from these studies suggest that this approach helped to democratically engage the elderly as end-user and identify acceptance issues.
DOCUMENT
Technology has a major impact on the way nurses work. Data-driven technologies, such as artificial intelligence (AI), have particularly strong potential to support nurses in their work. However, their use also introduces ambiguities. An example of such a technology is AI-driven lifestyle monitoring in long-term care for older adults, based on data collected from ambient sensors in an older adult’s home. Designing and implementing this technology in such an intimate setting requires collaboration with nurses experienced in long-term and older adult care. This viewpoint paper emphasizes the need to incorporate nurses and the nursing perspective into every stage of designing, using, and implementing AI-driven lifestyle monitoring in long-term care settings. It is argued that the technology will not replace nurses, but rather act as a new digital colleague, complementing the humane qualities of nurses and seamlessly integrating into nursing workflows. Several advantages of such a collaboration between nurses and technology are highlighted, as are potential risks such as decreased patient empowerment, depersonalization, lack of transparency, and loss of human contact. Finally, practical suggestions are offered to move forward with integrating the digital colleague
DOCUMENT