Rationale: A higher protein intake is suggested to preserve muscle mass during aging, and may therefore reduce the risk for sarcopenia. We explored whether the amount, type (animal/vegetable) and essential amino acid (EAA) composition of protein intake were associated with 5-year change in mid-thigh muscle cross-sectional area (CSA) in older adults.Methods: Protein intake was assessed at year 2 by a Block food frequency questionnaire in 2,597 participants of the Health ABC study, aged 70–79 y. At year 1 and year 6 mid-thigh muscle CSA (cm2) was measured by computed tomography. Multiple linear regression analysis was used to examine the association between energy adjusted protein residuals (total, animal and vegetable protein) and muscle CSA at year 6, adjusted for muscle CSA at year 1 and potential confounders including prevalent health conditions, physical activity and 5-year change in fat mass. EAAintake was expressed as percentage of total protein intake.Results: Mean protein intake was 0.90 (SD 0.36) g/kg/d and mean 5-year change in muscle CSA was −9.8 (17.0) cm2 (n = 1,561). No association was observed between energy adjusted total (β = −0.00 cm2 ; SE = 0.03; P = 0.98), animal (β = −0.00 cm2; SE = 0.03; P = 0.92), and plant (β = +0.07 cm2; SE = 0.07; P = 0.291) protein intake and muscle CSA at year 6, adjusted for baseline mid-thigh muscle area and potential confounders. No associations were observed for the EAAs.Conclusion: A higher total, animal or vegetable protein intake was not associated with 5 year change in mid-thigh cross sectional area in older adults. This conclusion contradicts some, but not all previous research, therefore optimal protein intake for older adults is currently not known.
The aim of this study was to assess the association between prescription changes frequency (PCF) and hospital admissions and to compare the PCF to the Chronic Disease Score (CDS). The CDS measures comorbidity on the basis of the 1-year pharmacy dispensing data. In contrast, the PCF is based on prescriptionchanges over a 3-month period. A retrospective matched case–control design was conducted. 10.000 patients were selected randomly from the Dutch PHARMO database, who had been hospitalized (index date) between July 1, 1998 and June 30, 2000. The primary study outcome was the number of prescription changes during several three-month time periods starting 18, 12, 9, 6, and 3 months before the index date. For each hospitalized patient, one nonhospitalized patient was matched for age, sex, and geographic area, and was assigned the same index date as the corresponding hospitalized patient.We classified four mutually exclusive types of prescription changes: change in dosage, switch, stop and start.