BACKGROUND: Prednisolone and other glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive drugs. However, prolonged use at a medium or high dose is hampered by side effects of which the metabolic side effects are most evident. Relatively little is known about their effect on gene-expression in vivo, the effect on cell subpopulations and the relation to the efficacy and side effects of GCs.AIM: To identify and compare prednisolone-induced gene signatures in CD4⁺ T lymphocytes and CD14⁺ monocytes derived from healthy volunteers and to link these signatures to underlying biological pathways involved in metabolic adverse effects.MATERIALS & METHODS: Whole-genome expression profiling was performed on CD4⁺ T lymphocytes and CD14⁺ monocytes derived from healthy volunteers treated with prednisolone. Text-mining analyses was used to link genes to pathways involved in metabolic adverse events.RESULTS: Induction of gene-expression was much stronger in CD4⁺ T lymphocytes than in CD14⁺ monocytes with respect to fold changes, but the number of truly cell-specific genes where a strong prednisolone effect in one cell type was accompanied by a total lack of prednisolone effect in the other cell type, was relatively low. Subsequently, a large set of genes was identified with a strong link to metabolic processes, for some of which the association with GCs is novel.CONCLUSION: The identified gene signatures provide new starting points for further study into GC-induced transcriptional regulation in vivo and the mechanisms underlying GC-mediated metabolic side effects.
DOCUMENT
Study goal: This study was carried out to answer the following research question: which motivation do healthy volunteers have to participate in phase I clinical trials? - Methods: A literature search was done through Google Scholar and Academic Search Premier, followed by three interviews with volunteers who had recently concluded their participation in a (non-commercial) phase I trial. - Results: Our literature search revealed mainly commercial motives for volunteers to participate in phase I clinical trials. The interviews (with volunteers in a non-commercial trial) showed that other factors may also play a decisive role, such as: (1) wish to support the investigator (2) wish to contribute to science, (3) access to more/better health care (4) sociability: possibility to relax and to communicate with other participants (5) general curiosity. Precondition is that risks and burden are deemed acceptable. - Conclusions: financial remuneration appears to be the predominant motive to participate voluntarily in a clinical trial. Other reasons were also mentioned however, such as general curiosity, the drive to contribute to science and the willingness to help the investigator. In addition, social reasons were given such as possibility to relax and to meet other people. Potential subjects state that they adequately assess the (safety) risks of participating in a trial as part of their decision process.
DOCUMENT
Aims: Prescribing medication is a complex process that, when done inappropriately, can lead to adverse drug events, resulting in patient harm and hospital admissions. Worldwide cost is estimated at 42 billion USD each year. Despite several efforts in the past years, medication-related harm has not declined. The aim was to determine whether a prescriber-focussed participatory action intervention, initiated by a multidisciplinary pharmacotherapy team, is able to reduce the number of in-hospital prescriptions containing ≥1 prescribing error (PE), by identifying and reducing challenges in appropriate prescribing. Methods: A prospective single-centre before- and after study was conducted in an academic hospital in the Netherlands. Twelve clinical wards (medical, surgical, mixed and paediatric) were recruited. Results: Overall, 321 patients with a total of 2978 prescriptions at baseline were compared with 201 patients with 2438 prescriptions postintervention. Of these, m456 prescriptions contained ≥1 PE (15.3%) at baseline and 357 prescriptions contained ≥1 PEs (14.6%) postintervention. PEs were determined in multidisciplinary consensus. On some study wards, a trend toward a decreasing number of PEs was observed. The intervention was associated with a nonsignificant difference in PEs (incidence rate ratio 0.96, 95% confidence interval 0.83–1.10), which was unaltered after correction. The most important identified challenges were insufficient knowledge beyond own expertise, unawareness of guidelines and a heavy workload. Conclusion: The tailored interventions developed with and implemented by stakeholders led to a statistically nonsignificant reduction in inappropriate in-hospital prescribing after a 6-month intervention period. Our prescriber-focussed participatory action intervention identified challenges in appropriate in-hospital prescribing on prescriber- and organizational level.
MULTIFILE