Een robot bouwen: hoe begin je daarmee? Bij U-Talent hebben we een module ontwikkeld waarin leerlingen leren werken met Arduino. We wilden de leerlingen enthousiasmeren voor de maakbaarheid van de technologie om ons heen en ze leren om hiermee zelfstandig aan de slag te gaan. In dit artikel doen we hiervan verslag in de hoop geïnspireerde collega’s handvatten te bieden om ook te gaan experimenteren.
DOCUMENT
Twirre V2 is the evolution of an architecture for mini-UAV platforms which allows automated operation in both GPS-enabled and GPSdeprived applications. This second version separates mission logic, sensor data processing and high-level control, which results in reusable software components for multiple applications. The concept of Local Positioning System (LPS) is introduced, which, using sensor fusion, would aid or automate the flying process like GPS currently does. For this, new sensors are added to the architecture and a generic sensor interface together with missions for landing and following a line have been implemented. V2 introduces a software modular design and new hardware has been coupled, showing its extensibility and adaptability
DOCUMENT
The application of DC grids is gaining more attention in office applications. Especially since powering an office desk would not require a high power connection to the main AC grid but could be made sustainable using solar power and battery storage. This would result in fewer converters and further advanced grid utilization. In this paper, a sustainable desk power application is described that can be used for powering typical office appliances such as computers, lighting, and telephones. The desk will be powered by a solar panel and has a battery for energy storage. The applied DC grid includes droop control for power management and can either operate stand-alone or connected to other DC-desks to create a meshed-grid system. A dynamic DC nano-grid is made using multiple self-developed half-bridge circuit boards controlled by microcontrollers. This grid is monitored and controlled using a lightweight network protocol, allowing for online integration. Droop control is used to create dynamic power management, allowing automated control for power consumption and production. Digital control is used to regulate the power flow, and drive other applications, including batteries and solar panels. The practical demonstrative setup is a small-sized desktop with applications built into it, such as a lamp, wireless charging pad, and laptop charge point for devices up to 45W. User control is added in the form of an interactive remote wireless touch panel and power consumption is monitored and stored in the cloud. The paper includes a description of technical implementation as well as power consumption measurements.
DOCUMENT
Based on the theory of embodied cognition we developed NOOT, at tangible tool that allows marking audio-moments during creative sessions. A detailed analysis of using NOOT in practice lead to a reconceptualization of NOOT within processes of external scaffolding. It also spurred a new design project focused on reflection during group sessions
DOCUMENT
Twirre is a new architecture for mini-UAV platforms designed for autonomous flight in both GPS-enabled and GPS-deprived applications. The architecture consists of low-cost hardware and software components. High-level control software enables autonomous operation. Exchanging or upgrading hardware components is straightforward and the architecture is an excellent starting point for building low-cost autonomous mini-UAVs for a variety of applications. Experiments with an implementation of the architecture are in development, and preliminary results demonstrate accurate indoor navigation
MULTIFILE
Interactive design is an emerging trend in dementia care environments. This article describes a research project aiming at the design and development of novel spatial objects with narrative attributes that incorporate embedded technology and textiles to support the wellbeing of people living with dementia. In collaboration with people with dementia, this interdisciplinary research project focuses on the question of how innovative spatial objects can be incorporated into dementia long-term care settings, transforming the space into a comforting and playful narrative environment that can enhance self-esteem while also facilitating communication between people living with dementia, family, and staff members. The research methodologies applied are qualitative, including Action Research. Participatory design methods with the experts by experience—the people with dementia—and health professionals have been used to inform the study. Early findings from this research are presented as design solutions comprising a series of spatial object prototypes with embedded technology and textiles. The prototypes were evaluated primarily by researchers, health professionals, academics, and design practitioners in terms of functionality, aesthetics, and their potential to stimulate engagement. The research is ongoing, and the aim is to evaluate the prototypes by using ethnographic and sensory ethnography methods and, consequently, further develop them through co-design workshops with people living with dementia.
MULTIFILE
Droop control is used for power management in DC grids. Based on the level of the DC grid voltage, the amount of power regulated to or from the appliance is regulated such, that power management is possible. The Universal 4 Leg is a laboratory setup for studying the functionality of a grid manager for power management. It has four independent outputs that can be regulated with pulse width modulation to control the power flow between the DC grid and for example, a rechargeable battery, solar panel or any passive load like lighting or heating.
DOCUMENT
The Smart Current Limiter is a switching DC to DC converter that provides a digitally pre-set input current control for inrush limiting and power management. Being able to digitally adjust the current level in combination with external feedback can be used for control systems like temperature control in high power DC appliances. Traditionally inrush current limiting is done using a passive resistance whose resistance changes depending on the current level. Bypassing this inrush limiting resister with a Mosfet improves efficiency and controllability, but footprint and losses remain large. A switched current mode controlled inrush limiter can limit inrush currents and even control the amount of current passing to the application. This enables power management and inrush current limitation in a single device. To reduce footprint and costs a balance between losses and cost-price on one side and electromagnetic interference on the other side is sought and an optimum switching frequency is chosen. To reduce cost and copper usage, switching happens on a high frequency of 300kHz. This increases the switching losses but greatly reduces the inductor size and cost compared to switching supplies running on lower frequencies. Additional filter circuits like snubbers are necessary to keep the control signals and therefore the output current stable.
DOCUMENT
This report is the final report for the FPGA accelerated PID controller, part of the Distributed Control Systems project. This project runs within the Lectoraat Robotics and High Tech Mechatronics of Fontys Hogeschool Engineering Eindhoven. The Lectoraat has the goal to develop applicable knowledge to support education and industry. This knowledge is acquired with projects run in conjunction with the industry. The report will go into detail for the software designed for this project, not the hardware design. This report is intended for follow up students working on the Distributed Control Systems project. Within this report the assumption is made that the reader is at least familiar with the terms EtherCAT, FPGA, Linux and PID controllers. However for each part a small basic introduction is included. For readers looking for the accomplishments in this project, the results are in chapter six. Following are short descriptions of the chapters in this report. The first chapter will give a short introduction to the project. It talks about why the project was conceived, where the project was done and what the expected end result is. The second chapter, the problem definition, talks about how the project has been defined, what is included and what is not and how the customer expects the final product to function and look like. The third chapter details the methodology used during this project. All the research preformed for this project will be described in the forth chapter. This chapter goes into the research into the Xilinx Zynq 7000 chip, Beckhoff's EtherCAT system, how the Serial Peripheral Interface works and how a PID controller functions. Following in chapter five the design is expanded upon. First the toolchain for building for the Zynq chip is explained. This is followed by and explanation of the different software parts that have been designed. Finally chapters six and seven provide the results and the conclusions and recommendations for this project.
DOCUMENT
We present a fully working prototype of NOOT, an interactive tangible system which supports (sharing of) moments of reflection during brainstorms. We discuss the iterative design process, informed by embodied situated cognition theory and by user studies in context using various versions of the prototype. Apart from a potentially useful product, NOOT served as a research-tool showing how physical materials and social interactions scaffold people’s sense-making efforts, and how technology might fit in to support this process.
DOCUMENT