Background: Modern modeling techniques may potentially provide more accurate predictions of dichotomous outcomes than classical techniques. Objective: In this study, we aimed to examine the predictive performance of eight modeling techniques to predict mortality by frailty. Methods: We performed a longitudinal study with a 7-year follow-up. The sample consisted of 479 Dutch community-dwelling people, aged 75 years and older. Frailty was assessed with the Tilburg Frailty Indicator (TFI), a self-report questionnaire. This questionnaire consists of eight physical, four psychological, and three social frailty components. The municipality of Roosendaal, a city in the Netherlands, provided the mortality dates. We compared modeling techniques, such as support vector machine (SVM), neural network (NN), random forest, and least absolute shrinkage and selection operator, as well as classical techniques, such as logistic regression, two Bayesian networks, and recursive partitioning (RP). The area under the receiver operating characteristic curve (AUROC) indicated the performance of the models. The models were validated using bootstrapping. Results: We found that the NN model had the best validated performance (AUROC=0.812), followed by the SVM model (AUROC=0.705). The other models had validated AUROC values below 0.700. The RP model had the lowest validated AUROC (0.605). The NN model had the highest optimism (0.156). The predictor variable “difficulty in walking” was important for all models. Conclusions: Because of the high optimism of the NN model, we prefer the SVM model for predicting mortality among community-dwelling older people using the TFI, with the addition of “gender” and “age” variables. External validation is a necessary step before applying the prediction models in a new setting.
DOCUMENT
The aim of this study was to assess the predictive ability of the frailty phenotype (FP), Groningen Frailty Indicator (GFI), Tilburg Frailty Indicator (TFI) and frailty index (FI) for the outcomes mortality, hospitalization and increase in dependency in (instrumental) activities of daily living ((I)ADL) among older persons. This prospective cohort study with 2-year follow-up included 2420 Dutch community-dwelling older people (65+, mean age 76.3±6.6 years, 39.5% male) who were pre-frail or frail according to the FP. Mortality data were obtained from Statistics Netherlands. All other data were self-reported. Area under the receiver operating characteristic curves (AUC) was calculated for each frailty instrument and outcome measure. The prevalence of frailty, sensitivity and specifcity were calculated using cutoff values proposed by the developers and cutoff values one above and one below the proposed ones (0.05 for FI). All frailty instruments poorly predicted mortality, hospitalization and (I)ADL dependency (AUCs between 0.62–0.65, 0.59–0.63 and 0.60–0.64, respectively). Prevalence estimates of frailty in this population varied between 22.2% (FP) and 64.8% (TFI). The FP and FI showed higher levels of specifcity, whereas sensitivity was higher for the GFI and TFI. Using a different cutoff point considerably changed the prevalence, sensitivity and specifcity. In conclusion, the predictive ability of the FP, GFI, TFI and FI was poor for all outcomes in a population of pre-frail and frail community-dwelling older people. The FP and the FI showed higher values of specifcity, whereas sensitivity was higher for the GFI and TFI.
DOCUMENT
Abstract Aims: To lower the threshold for applying ultrasound (US) guidance during peripheral intravenous cannulation, nurses need to be trained and gain experience in using this technique. The primary outcome was to quantify the number of procedures novices require to perform before competency in US-guided peripheral intravenous cannulation was achieved. Materials and methods: A multicenter prospective observational study, divided into two phases after a theoretical training session: a handson training session and a supervised life-case training session. The number of US-guided peripheral intravenous cannulations a participant needed to perform in the life-case setting to become competent was the outcome of interest. Cusum analysis was used to determine the learning curve of each individual participant. Results: Forty-nine practitioners participated and performed 1855 procedures. First attempt cannulation success was 73% during the first procedure, but increased to 98% on the fortieth attempt (p<0.001). The overall first attempt success rate during this study was 93%. The cusum learning curve for each practitioner showed that a mean number of 34 procedures was required to achieve competency. Time needed to perform a procedure successfully decreased when more experience was achieved by the practitioner, from 14±3 minutes on first procedure to 3±1 minutes during the fortieth procedure (p<0.001). Conclusions: Competency in US-guided peripheral intravenous cannulation can be gained after following a fixed educational curriculum, resulting in an increased first attempt cannulation success as the number of performed procedures increased.
MULTIFILE