© 2025 SURF
WG: Occupant and appliances heat gain Status Report (18-5-2020) Project: IEA Annex 71
MULTIFILE
Numeracy and mathematics education in vocational education is under pressure to keep up with the rapid changes in the workplace due to developments in workplace mathematics and the ubiquitous availability of technological tools. Vocational education is a large stream in education for 12- to 20-years-olds in the Netherlands and the numeracy and mathematics curriculum is on the brink of a reform. To assess what is known from research on numeracy in vocational education, we are in the process of conducting a systematic review of the international scientific literature of the past five years to get an overview of the recent developments and to answer research questions on the developments in vocational educational practices. The work is still in progress. We will present preliminary and global results. We see vocational education from the perspective of (young) adults learning mathematics.
LINK
This paper explores the contributions of research to the field of adults learning mathematics (ALM) in the last twenty years. The results of the review of the literature on ALM show that the most cited studies that have been published in the last twenty years tend to focus on the field of numeracy to understand health data (such as understanding how to dose a medicine in a medical treatment). However, we know little about key aspects of how adults learn mathematics, what obstacles they encounter, and how they overcome them. This paper identifies the main gaps that ALM research faces in the coming years.
The main objective of the study is to determine if non-specific physical symptoms (NSPS) in people with self-declared sensitivity to radiofrequency electromagnetic fields (RF EMF) can be explained (across subjects) by exposure to RF EMF. Furthermore, we pioneered whether analysis at the individual level or at the group level may lead to different conclusions. By our knowledge, this is the first longitudinal study exploring the data at the individual level. A group of 57 participants was equipped with a measurement set for five consecutive days. The measurement set consisted of a body worn exposimeter measuring the radiofrequency electromagnetic field in twelve frequency bands used for communication, a GPS logger, and an electronic diary giving cues at random intervals within a two to three hour interval. At every cue, a questionnaire on the most important health complaint and nine NSPS had to be filled out. We analysed the (time-lagged) associations between RF-EMF exposure in the included frequency bands and the total number of NSPS and self-rated severity of the most important health complaint. The manifestation of NSPS was studied during two different time lags - 0–1 h, and 1–4 h - after exposure and for different exposure metrics of RF EMF. The exposure was characterised by exposure metrics describing the central tendency and the intermittency of the signal, i.e. the time-weighted average exposure, the time above an exposure level or the rate of change metric. At group level, there was no statistically significant and relevant (fixed effect) association between the measured personal exposure to RF EMF and NSPS. At individual level, after correction for multiple testing and confounding, we found significant within-person associations between WiFi (the self-declared most important source) exposure metrics and the total NSPS score and severity of the most important complaint in one participant. However, it cannot be ruled out that this association is explained by residual confounding due to imperfect control for location or activities. Therefore, the outcomes have to be regarded very prudently. The significant associations were found for the short and the long time lag, but not always concurrently, so both provide complementary information. We also conclude that analyses at the individual level can lead to different findings when compared to an analysis at group level. https://doi.org/10.1016/j.envint.2019.104948 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
MULTIFILE
This paper is a summary paper of the Thematic Working Group (TWG) on Adult Mathematics Education (AME). The theme AME made its first appearance on CERME11 and in this paper we provide an overview of the growing and blossoming field of AME and the results of the working group. The main themes associated with AME are: the definition, scope, and assessment of numeracy, the role of language and dialogue, the role of affect, including motivation, and the role of societal power structures, including subthemes like equity, inclusion, vulnerable learners, agency and self-efficacy. We conclude with the opportunities and challenges for this theme from both scientific and societal perspective.
LINK
The current study investigates the effects of the school lockdowns during school years 2019–2020 and 2020–2021 on the achievement scores of primary school students during the COVID-19 pandemic. We analyzed scores for spelling, reading fluency (i.e., decoding speed), reading comprehension, and mathematics from standardized student tracking systems for 5125 students from 26 primary schools in the urban region of The Hague, the Netherlands. Results showed that students in grades 1 through 3 had significant learning delays after the first lockdown. However, results after the second lockdown showed that most students were able to catch up, compared to students from corresponding grades of cohorts before COVID-19. The magnitude of these positive effects was mostly close to the negative effect of the first lockdown. Apparently, during the second lockdown, schools seemed better prepared and able to deliver more effective home schooling and online instruction. The hypothesis that students’ learning from a low SES home environment will suffer most from the school lockdowns could only partly be confirmed. SES effects at the individual level tended to be mitigated by negative effects of SES at the school level, making SES-related differences between schools less profound. The findings of this study offer a broader perspective to evaluate the effects of long-term school closures. Implications for educational practice and issues of inequality between students are discussed.
Many students persistently misinterpret histograms. This calls for closer inspection of students’ strategies when interpreting histograms and case-value plots (which look similar but are diferent). Using students’ gaze data, we ask: How and how well do upper secondary pre-university school students estimate and compare arithmetic means of histograms and case-value plots? We designed four item types: two requiring mean estimation and two requiring means comparison. Analysis of gaze data of 50 students (15–19 years old) solving these items was triangulated with data from cued recall. We found five strategies. Two hypothesized most common strategies for estimating means were confirmed: a strategy associated with horizontal gazes and a strategy associated with vertical gazes. A third, new, count-and-compute strategy was found. Two more strategies emerged for comparing means that take specific features of the distribution into account. In about half of the histogram tasks, students used correct strategies. Surprisingly, when comparing two case-value plots, some students used distribution features that are only relevant for histograms, such as symmetry. As several incorrect strategies related to how and where the data and the distribution of these data are depicted in histograms, future interventions should aim at supporting students in understanding these concepts in histograms. A methodological advantage of eye-tracking data collection is that it reveals more details about students’ problem-solving processes than thinking-aloud protocols. We speculate that spatial gaze data can be re-used to substantiate ideas about the sensorimotor origin of learning mathematics.
LINK
In this chapter, the focus is on arithmetic which for the Netherlands as a trading nation is a crucial part of the mathematics curriculum.The chapter goes back to the roots of arithmetic education in the sixteenth century and compares it with the current approach to teaching arithmetic. In the sixteenth century, in the Netherlands, the traditional arithmetic method using coins on a counting board was replaced by written arithmetic with Hindu–Arabic numbers. Many manuscripts and books written in the vernacular teach this new method to future merchants, money changers, bankers, bookkeepers, etcetera. These students wanted to learn recipes to solve the arithmetical problems of their future profession. The books offer standard algorithms and many practical exercises. Much attention was paid to memorising rules and recipes, tables of multiplication and other number relations. It seems likely that the sixteenth century craftsmen became skilful reckoners within their profession and that was sufficient. They did not need mathematical insight to solve new problems. Five centuries later we want to teach our students mathematical skills to survive in a computerised and globalised society. They also need knowledge about number relations and arithmetical rules, but they have to learn to apply this knowledge flexibly and meaningfully to solve new problems, to mathematise situations, and to evaluate, interpret and check output of computers and calculators. The twenty-first century needs problem solvers, but to acquire the skills of a good problem solver a firm knowledge base—comparable with that of the sixteenth century reckoner—is still necessary.
LINK