The catalytic conversion of oleic acid to aromatics (benzene, toluene, and xylenes, BTX) over a granular H-ZSM-5/Al2O3 catalyst (ϕ 1.2–1.8 mm, 10 g loading) was investigated in a continuous bench-scale fixed-bed reactor (10 g oleic acid h–1). A peak carbon yield of aromatics of 27.4% was obtained at a catalyst bed temperature of 550 °C and atmospheric pressure. BTX was the major aromatics formed (peak carbon yield was 22.7%), and a total BTX production of 1000 mg g–1 catalyst was achieved within a catalyst lifetime of 6.5 h for the fresh catalyst. The catalyst was deactivated due to severe coke deposition (ca. 22.1 wt % on the catalyst). The used catalyst was reactivated by an ex situ oxidative regeneration at 680 °C in air for 12 h. The regenerated catalyst was subsequently recycled, and in total, 7 cycles of reaction-regeneration were performed. A gradual decrease in the peak carbon yield of BTX was observed with reaction-regeneration cycles (e.g., to 16.3% for the catalyst regenerated for 6 times). However, the catalyst lifetime was remarkably prolonged (e.g., >24 h), leading to a significantly enhanced total BTX production (e.g., 3000 mg g–1 catalyst in 24 h). The fresh, used, and regenerated catalysts were characterized by N2 and Ar physisorption, XRD, HR-TEM-EDX, 27Al, and 29Si MAS ssNMR, NH3-TPD, TGA, and CHN elemental analysis. Negligible changes in textural properties, crystalline structure, and framework occurred after one reaction-regeneration cycle, except for a slight decrease in acidity. However, dealumination of the H-ZSM-5 framework was observed after 7 cycles of reaction-regeneration, leading to a decrease in microporosity, crystallinity, and acidity. Apparently, these changes are not detrimental for catalyst activity, and actually, the lifetime of the catalyst increases, rationalized by considering that coke formation rates are retarded when the acidity is reduced.
The synthesis of aromatic compounds from biomass-derived furans is a key strategy in the pursuit of a sustainable economy. Within this field, a Diels–Alder/aromatization cascade reaction with chitin-based furans is emerging as a powerful tool for the synthesis of nitrogen-containing aromatics. In this study we present the conversion of chitin-based 3-acetamido-furfural (3A5F) into an array of di- and tri-substituted anilides in good to high yields (62–90%) via a hydrazone mediated Diels–Alder/aromatization sequence. The addition of acetic anhydride expands the dienophile scope and improves yields. Moreover, replacing the typically used dimethyl hydrazone with its pyrrolidine analogue, shortens reaction times and further increases yields. The hydrazone auxiliary is readily converted into either an aldehyde or a nitrile group, thereby providing a plethora of functionalized anilides. The developed procedure was also applied to 3-acetamido-5-acetylfuran (3A5AF) to successfully prepare a phthalimide.
Sustainable production of aromatics, especially benzene, toluene and xylenes (BTX), is essential considering their broad applications and the current global transition away from crude oil utilization. Aromatization of lower olefins, particularly ethene and propene, offers great potential if they are derived from more circular alternative carbon feedstocks such as biomass and waste plastics. This work aims to identify the preferred olefin feed, ethene or propene, for BTX production in a fixed-bed reactor. A commercial H-ZSM-5 (Si/Al = 23) catalyst was used as a reference catalyst, as well as a Ga-ZSM-5 catalyst, prepared by Ga ion-exchange of the H-ZSM-5 catalyst. At 773 K, 1 bar, 45 vol % olefin, 6.75 h−1, propene aromatization over the Ga-ZSM-5 catalyst exhibited higher BTX selectivity of 55 % and resulted in slower catalyst deactivation compared to ethene aromatization.
Alle auto's, windmolens en o.a. houten kozijnen hebben één ding gemeen. Ze moeten gecoat worden om het materiaal te beschermen. Alleen al in Nederland wordt ruim 1 miljard euro omzet gerealiseerd met coatings. Er is dringend behoefte aan verduurzaming en innovatie. Aan het einde van de levensduur wordt de coating meestal verbrand, dit leidt tot meer CO2 omdat coatings veelal van fossiele grondstoffen zijn gemaakt. Het maken van een biobased coating is daarom essentieel. Echter, één belangrijk ingrediënt mist, de aromaat. Het zijn de aromaten die de coating glanzend, krasvast en uv-bestendig maken. De coatingindustrie heeft geprobeerd het fossiele ingrediënt ftaalzuuranhydride (PA) in de hars te vervangen, maar er is tot op heden geen goede oplossing gevonden. Relement ontwikkelde als eerste bedrijf wereldwijd een bio-aromaat, te weten biobased 3-methylftaalzuuranhydride (bio-MPA). Een showmodel van een coating gebaseerd op bio-MPA ontbreekt en dat is precies wat samen met Fontys Hogeschool onderzocht gaat worden in dit KIEM Go-Chem project. Het doel van het project Alchemist is om een biobased alkyd coating showmodel te realiseren gebaseerd op bio-MPA i.p.v. fossiel PA. De eigenschappen van de coating worden getest en vergeleken met een alkyd coating gebaseerd op fossiel PA. Er worden betere eigenschappen verwacht door het vervangen van PA door MPA.
Coatings zijn overal: denk aan o.a. auto’s, windmolens en houten kozijnen. Alleen al in Nederland wordt ruim 1 miljard euro omzet gerealiseerd met coatings. Er is echter een probleem: aan het einde van de levensduur wordt de coating meestal verbrand, omdat recycling erg moeilijk is. Het maken van een biobased coating is daarom essentieel om de CO2-voetprint te verlagen. Echter, één belangrijk ingrediënt mist, de aromaat. Het zijn de aromaten die de coating belangrijke eigenschappen geven zoals glans en krasvastheid. Relement ontwikkelde als eerste bedrijf wereldwijd een bio-aromaat, te weten biobased 3-methylftaalzuuranhydride (bio MPA) wat een vervanger kan zijn voor het fossiel ftaalzuuranhydride (PA). Het doel van dit Kiem GoChem project Alchimist is om het effect van bio MPA t.o.v. fossiel PA op de performance van een alkydcoating beter te begrijpen.
De maatschappij raakt zich in toenemende mate bewust dat het huidige lineaire economisch model niet meer houdbaar is. Het gebruik van petrochemische producten resulteert in een toename van CO2 in de atmosfeer. Verder neemt de hoeveelheid afval, met name plastics, verontrustende vormen aan en raken de oceanen zienderogen meer vervuild. Om de bovengenoemde problemen te tackelen is een transitie naar biobased en circulair essentieel. Naast dat we voor het maken van (consumenten) producten meer gebruik moeten maken van natuurlijke, hernieuwbare grondstofstromen zullen we de huidige materialen tevens veel beter moeten recyclen teneinde de druk op het milieu te verminderen. Een belangrijk thema in het recyclen van plastics is de chemische recycling. Een bekend voorbeeld waar op dit moment onderzoek naar verricht wordt is de depolymerisatie van PET naar de monomeren, GEVOLGD DOOR de scheiding van additieven en kleurstoffen en vervolgens weer een polymerisatie tot het gewenste plastic. In dit project wordt een andere methode voor chemische recycling onderzocht, namelijk de katalytische pyrolyse van (mengsels) van plastics tot de aromaten benzeen, tolueen en xylenen (BTX). Deze aromaten zijn veel gebruikte intermediairen voor tal van hoogwaardige plastics, zoals polyesters, polyamides en polyurethanen. Ruwweg 40% van alle huidige plastics is opgebouwd uit BTX. De techniek kan gebruikt worden voor mengsels van plastics en, door toepassing van de ex situ approach kunnen ook sterk vervuilde plastic stromen omgezet worden naar BTX. In samenwerking met het bedrijf BioBTX gaat de Rijksuniversiteit Groningen een kinetische studie doen naar de omzetting van plastics door gebruik te maken van tweetal geselecteerde plastic voedingen en een modelsysteem (etheen, propeen en mengels) voor de omzetting naar BTX middels een katalytische pyrolyse. De resultaten van deze studie zullen gebruikt worden voor een techno-economische evaluatie om te inventariseren of het proces commercieel aantrekkelijk is en geschikt voor verdere opschaling richting pilot/demoplant.