PURPOSE: Walking ability in general and specifically for lower limb amputees is of major importance for social mobility and ADL independence. Walking determines prosthesis prescription. The aim of this study was to mathematically analyse factors influencing claimed walking distance of lower limb amputees of 500 m or more.METHOD: A total of 437 patients returned two questionnaires: the Groningen Questionnaire Problems after Leg Amputation, in which walking distance was assessed, and the RAND 36.RESULTS: The chance of walking 500 m or more reduced when a transfemoral amputation was performed. The chance reduced even more when phantom pain or stump pains were present. If the amputation was performed because of vascular disease or because of vascular problems because of diabetes the chance reduced again. Independently of these factors, age reduced the chance of walking 500 m or more.CONCLUSION: The chance of walking 500 m or more reduces with increase in age and a more proximal amputation. The chance reduces even further when the amputation is performed because of diabetes or vascular disease and also if phantom pain and or stump pain is present.
DOCUMENT
Currently the advances in the field of 3D printing are causing a revolution in the (bio-)medical field. With applications ranging from patient-specific anatomical models for surgical preparation to prosthetic limbs and even scaffolds for tissue engineering, the possibilities seem endless. Today, the most widely used method is FDM printing. However, there is still a limited range of biodegradable and biocompatible materials available. Moreover, printed implants like for instance cardiovascular stents require higher resolution than is possible to reach with FDM. High resolution is crucial to avoid e.g. bacterial growth and aid to mechanical strength of the implant. For this reason, it would be interesting to consider stereolithography as alternative to FDM for applications in the (bio-) medical field. Stereolithography uses photopolymerizable resins to make high resolution prints. Because the amount of commercially available resins is limited and hardly biocompatible, here we investigate the possibility of using acrylates and vinylesters in an effort to expand the existing arsenal of biocompatible resins. Mechanical properties are tailorable by varying the crosslink density and by varying the spacer length. To facilitate rapid production of high-resolution prints we use masked SLA (mSLA) as an alternative to conventional SLA. mSLA cures an entire layer at a time and therefore uses less time to complete a print than conventional SLA. Additionally, with mSLA it takes the same time to make 10 prints as it would to make only one. Several formulations were prepared and tested for printability and mechanical strength.
MULTIFILE
Assistive Technology (AT) is any technology that supports people with functional difficulties to perform their daily activities with less difficulty and/or obstruction, thus contributing to a more fulfilling life. This refers to people of all ages and to all kinds of functional limitations, either permanent or temporary. Assistive products can be traditional physical products, such as wheelchairs, eyeglasses, hearing aids, or prostheses, but they can also be special input devices, care robots, computers with accessible software, apps for smartphones, home automation solutions, virtual realities, etc. It is essential to understand that AT involves more than just familiar products, and that it also includes knowledge about the personalized selection of appropriate solutions, provisions, and services, as well as the training of all parties involved, the measurement of outcomes and impacts, awareness of ethical issues, etc.
DOCUMENT