Verslag van een evaluatieonderzoek onder gebruikers van een digitaal instrument voor formatieve assessments van (beginnende) leraren. Uit de evaluatie kwam onder andere naar voren dat gebruikers in het online instrument graag de mogelijkheid van een 'guided tour' wilden hebben en dat de feedback in het instrument kon verbeteren: - de feedback was soms te beknopt, - de feedback bij de observatieopdracht leek te veel op die van de analyseopdracht, - de feedback blijft te oppervlakkig, gebruikers wilden graag wat meer theorie.
AIM: To systematically review the available literature on the diagnostic accuracy of questionnaires and measurement instruments for headaches associated with musculoskeletal symptoms.DESIGN: Articles were eligible for inclusion when the diagnostic accuracy (sensitivity/specificity) was established for measurement instruments for headaches associated with musculoskeletal symptoms in an adult population. The databases searched were PubMed (1966-2018), Cochrane (1898-2018) and Cinahl (1988-2018). Methodological quality was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool (QUADAS-2) and COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist for criterion validity. When possible, a meta-analysis was performed. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) recommendations were applied to establish the level of evidence per measurement instrument.RESULTS: From 3450 articles identified, 31 articles were included in this review. Eleven measurement instruments for migraine were identified, of which the ID-Migraine is recommended with a moderate level of evidence and a pooled sensitivity of 0.87 (95% CI: 0.85-0.89) and specificity of 0.75 (95% CI: 0.72-0.78). Six measurement instruments examined both migraine and tension-type headache and only the Headache Screening Questionnaire - Dutch version has a moderate level of evidence with a sensitivity of 0.69 (95% CI 0.55-0.80) and specificity of 0.90 (95% CI 0.77-0.96) for migraine, and a sensitivity of 0.36 (95% CI 0.21-0.54) and specificity of 0.86 (95% CI 0.74-0.92) for tension-type headache. For cervicogenic headache, only the cervical flexion rotation test was identified and had a very low level of evidence with a pooled sensitivity of 0.83 (95% CI 0.72-0.94) and specificity of 0.82 (95% CI 0.73-0.91).DISCUSSION: The current review is the first to establish an overview of the diagnostic accuracy of measurement instruments for headaches associated with musculoskeletal factors. However, as most measurement instruments were validated in one study, pooling was not always possible. Risk of bias was a serious problem for most studies, decreasing the level of evidence. More research is needed to enhance the level of evidence for existing measurement instruments for multiple headaches.
There is emerging evidence that the performance of risk assessment instruments is weaker when used for clinical decision‐making than for research purposes. For instance, research has found lower agreement between evaluators when the risk assessments are conducted during routine practice. We examined the field interrater reliability of the Short‐Term Assessment of Risk and Treatability: Adolescent Version (START:AV). Clinicians in a Dutch secure youth care facility completed START:AV assessments as part of the treatment routine. Consistent with previous literature, interrater reliability of the items and total scores was lower than previously reported in non‐field studies. Nevertheless, moderate to good interrater reliability was found for final risk judgments on most adverse outcomes. Field studies provide insights into the actual performance of structured risk assessment in real‐world settings, exposing factors that affect reliability. This information is relevant for those who wish to implement structured risk assessment with a level of reliability that is defensible considering the high stakes.