Now that collaborative robots are becoming more widespread in industry, the question arises how we can make them better co-workers and team members. Team members cooperate and collaborate to attain common goals. Consequently they provide and receive information, often non-linguistic, necessary to accomplish the work at hand and coordinate their activities. The cooperative behaviour needed to function as a team also entails that team members have to develop a certain level of trust towards each other. In this paper we argue that for cobots to become trusted, successful co-workers in an industrial setting we need to develop design principles for cobot behaviour to provide legible, that is understandable, information and to generate trust. Furthermore, we are of the opinion that modelling such non-verbal cobot behaviour after animal co-workers may provide useful opportunities, even though additional communication may be needed for optimal collaboration. Marijke Bergman, Elsbeth de Joode, +1 author Janienke Sturm Published in CHIRA 2019 Computer Science
MULTIFILE
Over the past few years the tone of the debate around climate change has shifted from sceptical to soberingly urgent as the global community has prioritised the research into solutions which will mitigate greenhouse gas emissions. So far this research has been insufficient. One of the major problems for driving public and private stakeholders to implement existing solutions and research new ones is how we communicate about climate change (Stoknes, 2014). There seems to be a lack of common language that drives the scientific community away from policymakers and the public. Due to this lack, it is hard to translate findings into viable and sustainable solutions and to adopt new climate-neutral economies and habits.
MULTIFILE
In this paper we explore the influence of the physical and social environment (the design space) son the formation of shared understanding in multidisciplinary design teams. We concentrate on the creative design meeting as a microenvironment for studying processes of design communication. Our applied research context entails the design of mixed physical–digital interactive systems supporting design meetings. Informed by theories of embodiment that have recently gained interest in cognitive science, we focus on the role of interactive “traces,” representational artifacts both created and used by participants as scaffolds for creating shared understanding. Our research through design approach resulted in two prototypes that form two concrete proposals of how the environment may scaffold shared understanding in design meetings. In several user studies we observed users working with our systems in natural contexts. Our analysis reveals how an ensemble of ongoing social as well as physical interactions, scaffolded by the interactive environment, grounds the formation of shared understanding in teams. We discuss implications for designing collaborative tools and for design communication theory in general.
MULTIFILE