This article delves into the acceptance of autonomous driving within society and its implications for the automotive insurance sector. The research encompasses two different studies conducted with meticulous analysis. The first study involves over 600 participants involved with the automotive industry who have not yet had the opportunity to experience autonomous driving technology. It primarily centers on the adaptation of insurance products to align with the imminent implementation of this technology. The second study is directed at individuals who have had the opportunity to test an autonomous driving platform first-hand. Specifically, it examines users’ experiences after conducting test drives on public roads using an autonomous research platform jointly developed by MAPFRE, Universidad Carlos III de Madrid, and Universidad Politécnica de Madrid. The study conducted demonstrates that the user acceptance of autonomous driving technology significantly increases after firsthand experience with a real autonomous car. This finding underscores the importance of bringing autonomous driving technology closer to end-users in order to improve societal perception. Furthermore, the results provide valuable insights for industry stakeholders seeking to navigate the market as autonomous driving technology slowly becomes an integral part of commercial vehicles. The findings reveal that a substantial majority (96% of the surveyed individuals) believe that autonomous vehicles will still require insurance. Additionally, 90% of respondents express the opinion that policies for autonomous vehicles should be as affordable or even cheaper than those for traditional vehicles. This suggests that people may not be fully aware of the significant costs associated with the systems enabling autonomous driving when considering their insurance needs, which puts the spotlight back on the importance of bringing this technology closer to the general public.
DOCUMENT
IntroductionThe driving pressure (ΔP) has an independent association with outcome in patients with acute respiratory distress syndrome (ARDS). INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop mode of ventilation that targets the lowest work and force of breathing.AimTo compare transpulmonary and respiratory system ΔP between closed-loop ventilation and conventional pressure controlled ventilation in patients with moderate-to-severe ARDS.MethodsSingle-center randomized cross-over clinical trial in patients in the early phase of ARDS. Patients were randomly assigned to start with a 4-h period of closed-loop ventilation or conventional ventilation, after which the alternate ventilation mode was selected. The primary outcome was the transpulmonary ΔP; secondary outcomes included respiratory system ΔP, and other key parameters of ventilation.ResultsThirteen patients were included, and all had fully analyzable data sets. Compared to conventional ventilation, with closed-loop ventilation the median transpulmonary ΔP with was lower (7.0 [5.0–10.0] vs. 10.0 [8.0–11.0] cmH2O, mean difference − 2.5 [95% CI − 2.6 to − 2.1] cmH2O; P = 0.0001). Inspiratory transpulmonary pressure and the respiratory rate were also lower. Tidal volume, however, was higher with closed-loop ventilation, but stayed below generally accepted safety cutoffs in the majority of patients.ConclusionsIn this small physiological study, when compared to conventional pressure controlled ventilation INTELLiVENT-ASV reduced the transpulmonary ΔP in patients in the early phase of moderate-to-severe ARDS. This closed-loop ventilation mode also led to a lower inspiratory transpulmonary pressure and a lower respiratory rate, thereby reducing the intensity of ventilation.Trial registration Clinicaltrials.gov, NCT03211494, July 7, 2017. https://clinicaltrials.gov/ct2/show/NCT03211494?term=airdrop&draw=2&rank=1.
MULTIFILE
Background: Adverse outcome pathway (AOP) networks are versatile tools in toxicology and risk assessment that capture and visualize mechanisms driving toxicity originating from various data sources. They share a common structure consisting of a set of molecular initiating events and key events, connected by key event relationships, leading to the actual adverse outcome. AOP networks are to be considered living documents that should be frequently updated by feeding in new data. Such iterative optimization exercises are typically done manually, which not only is a time-consuming effort, but also bears the risk of overlooking critical data. The present study introduces a novel approach for AOP network optimization of a previously published AOP network on chemical-induced cholestasis using artificial intelligence to facilitate automated data collection followed by subsequent quantitative confidence assessment of molecular initiating events, key events, and key event relationships. Methods: Artificial intelligence-assisted data collection was performed by means of the free web platform Sysrev. Confidence levels of the tailored Bradford-Hill criteria were quantified for the purpose of weight-of-evidence assessment of the optimized AOP network. Scores were calculated for biological plausibility, empirical evidence, and essentiality, and were integrated into a total key event relationship confidence value. The optimized AOP network was visualized using Cytoscape with the node size representing the incidence of the key event and the edge size indicating the total confidence in the key event relationship. Results: This resulted in the identification of 38 and 135 unique key events and key event relationships, respectively. Transporter changes was the key event with the highest incidence, and formed the most confident key event relationship with the adverse outcome, cholestasis. Other important key events present in the AOP network include: nuclear receptor changes, intracellular bile acid accumulation, bile acid synthesis changes, oxidative stress, inflammation and apoptosis. Conclusions: This process led to the creation of an extensively informative AOP network focused on chemical-induced cholestasis. This optimized AOP network may serve as a mechanistic compass for the development of a battery of in vitro assays to reliably predict chemical-induced cholestatic injury.
DOCUMENT
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.
Receiving the first “Rijbewijs” is always an exciting moment for any teenager, but, this also comes with considerable risks. In the Netherlands, the fatality rate of young novice drivers is five times higher than that of drivers between the ages of 30 and 59 years. These risks are mainly because of age-related factors and lack of experience which manifests in inadequate higher-order skills required for hazard perception and successful interventions to react to risks on the road. Although risk assessment and driving attitude is included in the drivers’ training and examination process, the accident statistics show that it only has limited influence on the development factors such as attitudes, motivations, lifestyles, self-assessment and risk acceptance that play a significant role in post-licensing driving. This negatively impacts traffic safety. “How could novice drivers receive critical feedback on their driving behaviour and traffic safety? ” is, therefore, an important question. Due to major advancements in domains such as ICT, sensors, big data, and Artificial Intelligence (AI), in-vehicle data is being extensively used for monitoring driver behaviour, driving style identification and driver modelling. However, use of such techniques in pre-license driver training and assessment has not been extensively explored. EIDETIC aims at developing a novel approach by fusing multiple data sources such as in-vehicle sensors/data (to trace the vehicle trajectory), eye-tracking glasses (to monitor viewing behaviour) and cameras (to monitor the surroundings) for providing quantifiable and understandable feedback to novice drivers. Furthermore, this new knowledge could also support driving instructors and examiners in ensuring safe drivers. This project will also generate necessary knowledge that would serve as a foundation for facilitating the transition to the training and assessment for drivers of automated vehicles.