Within the profile Technical Information Technology (ICT Department) the most important specializations are Embedded Software and Industrial Automation. About half of the Technical Information curriculum consists of learning modules, the other half is organized in projects. The whole study lasts four years. After two-and-a-half year students choose a specialization. Before the choice is made students have several occasions in which they learn something about the possible fields of specialization. In the first and second year there are two modules about Industrial Automation. First there is a module on actuators, sensors and interfacing, later a module on production systems. Finally there is an Industrial Automation project. In this project groups of students get the assignment to develop the control for a scale model flexible automation cell or to develop a monitoring system for this cell. In the last year of their studies students participate in a larger Industrial Automation project, often with an assignment from Industry. Here also the possibility exists to join multidisciplinary projects (IPD; integrated product development).
DOCUMENT
The present study aims at understanding and addressing certain challenges of automation of composite repairs. This research is part of a larger, SIA-RAAK funded project FIXAR, running in three Universities of Applied Sciences in the Netherlands and a cluster of knowledge institutions and industry partners.The approach followed in the current study, consists of three steps. First, the identification of the feasibility and most promising procedures for automated composite repair by analysis of current state-of-the-art methods as prescribed by OEMs and standards. Processes which are tedious or even contain health risks may qualify for automation. Second, a comparison of curing alternatives for composite repairs is made, by means of the creation and testing of specimen using different curing strategies. Lastly, a benchmark test of human made composite repairs is used in order to set a reference baseline for automation quality. This benchmark can be then applied to define a lower limit and prevent over-optimization. The employed methodology includes data collection, analysis, modelling and experiments.
DOCUMENT
In recent years, the demand for efficient automation across various sectors has accelerated significantly [...].
DOCUMENT
In the rapidly evolving aviation sector, airports are pivotal as centers of infrastructure and economic activity. Despite advancements, the understanding of airport apron turnaround activities being developed for autonomous operations and their potential to transform key improvement areas remains limited. This study addresses these research gaps through a systematic literature review (SLR) of 23 selected articles from an initial pool of 425, focusing on advancements from 2019 to 2023. The results indicate considerable automation in labour-intensive tasks like baggage and passenger handling, leading to enhancements in safety, efficiency, and capacity. Nonetheless, a significant gap remains in research evaluating the cost-effectiveness of these technologies. This review provides important perspectives for decision-makers and enhances the strategic conversation regarding the implementation of autonomous systems in airport ground operations.
DOCUMENT
Automation surprises in aviation continue to be a significant safety concern and the community’s search for effective strategies to mitigate them are ongoing. The literature has offered two fundamentally divergent directions, based on different ideas about the nature of cognition and collaboration with automation. In this paper, we report the results of a field study that empirically compared and contrasted two models of automation surprises: a normative individual-cognition model and a sensemaking model based on distributed cognition. Our data prove a good fit for the sense-making model. This finding is relevant for aviation safety, since our understanding of the cognitive processes that govern human interaction with automation drive what we need to do to reduce the frequency of automation-induced events.
DOCUMENT
As a logical consequence of the advancements in automation of production of composite aircraft structures, more attention is paid to the automation of maintenance. Current repair procedures involve manual labour and exposure to harmful particles (such as dust, vapours) while final quality and evidencing depends largely on the skills of repair technicians. The current study aims to automate composite repair procedures for the aviation sector with the objective to counter these disadvantages. Main research question: ‘What is required for a robot system to assist in composite repairs’This research is part of a larger, SIA-RAAK funded project FIXAR, running in three Universities of Applied Sciences in the Netherlands and a cluster of knowledge institutions and industry partners.In the repair process of aircraft structures, repair by means of scarf or lap joints is common practice. First paint layers must be removed to inspect the area and prepare for further repair. Then damaged material is removed. Material is replaced and the repair is finished and painted. Tasks within the repair process that are considered dull or harmful are sanding and material removal. Current investigation focussed on automation of these tasks.
DOCUMENT
Organizations in legal practice, under pressure to do “more for less,” are searching for ways to automate legal work, to improve efficiency of legal service delivery. Automated drafting of contracts (or: contract automation) is one of the areas where technology is—partly—replacing legal professionals. In Dutch legal practice, the number of organizations that are actively deploying contract automation is still relatively small, but growing. This chapter looks at experiences with contract automation of organizations from various sectors in Dutch legal practice. Contract automation can improve legal service delivery to consumers and SMEs, as well as contracting processes within organizations. Several organizations report positive results. However, successfully implementing contract automation, especially for internal use within organizations, is not simple. Tight budgets, resistance to change and poor integration with other software are some of the problems that organizations may encounter. Generally, human and organizational factors are often at least as important as the technological aspects. Successful implementation of contract automation requires design thinking, a proactive approach and process-oriented (legal) professionals. Regardless of these difficulties, the use of contract automation software in Dutch legal practice can be expected to increase, due to several factors. The number of organizations that are offering contracts (and other legal documents) online to SMEs and consumers has grown rapidly over the last years. Contract automation is not only offered to consumers and SMEs by commercial parties, but also by branch organizations, as a service to their members. Consumers and SMEs will become used to these self-help solutions for legal matters. Legal publishers are also increasing the offering of automated contracts and other legal documents. In addition, law firms and consultants are promoting the use of contract automation within client organizations. Finally, many corporate organizations are increasingly exchanging experiences on improving legal operations and the use of Legal Tech, including contract automation. Eventually, increased use of contract automation may drive further harmonization of contracts within sectors and facilitate other technological applications, such as the automated analysis of contracts.
DOCUMENT
Automation surprise (AS) has often been associated with aviation safety incidents. Although numerous laboratory studies have been conducted, few data are available from routine flight operations. A survey among a representative sample of 200 Dutch airline pilots was used to determine the prevalence of AS and the severity of its consequences, and to test some of the factors leading to AS. Results show that AS is a relatively widespread phenomenon that occurs three times per year per pilot on average but rarely has serious consequences. In less than 10% of the AS cases that were reviewed, an undesired aircraft state was induced. Reportable occurrences are estimated to occur only once every 1–3 years per pilot. Factors leading to a higher prevalence of AS include less flying experience, increasing complexity of the flight control mode, and flight duty periods of over 8 hr. It is concluded that AS is a manifestation of system and interface complexity rather than cognitive errors.
DOCUMENT
In the Netherlands, the Dutch Ministry of Health, Welfare and Sport (MINVWS) encourages the use of smart home automation (SHA) in small-scale senior accommodations (SSSAs). The initiatives were evaluated in order to determine which of the smart home automation systems contribute to enhance quality of care and improve the quality of life of residents.
LINK
Whereas in most studies conducted previously the effect of automation bias has been investigated in terms of an instantaneous decision, this study is aimed at quantifying its duration.
DOCUMENT