Emissions from aviation will continue to increase in the future, in contradiction of global climate policy objectives. Yet, airlines and airline organisations suggest that aviation will become climatically sustainable. This paper investigates this paradox by reviewing fuel-efficiency gains since the 1960s in comparison to aviation growth, and by linking these results to technology discourses, based on a two-tiered approach tracing technology-focused discourses over 20 years (1994-2013). Findings indicate that a wide range of solutions to growing emissions from aviation have been presented by industry, hyped in global media, and subsequently vanished to be replaced by new technology discourses. Redundant discourses often linger in the public domain, where they continue to be associated with industry aspirations of 'sustainable aviation' and 'zero-emission flight'. The paper highlights and discusses a number of technology discourses that constitute 'technology myths', and the role these 'myths' may be playing in the enduring but flawed promise of sustainable aviation. We conclude that technology myths require policy-makers to interpret and take into account technical uncertainty, which may result in inaction that continues to delay much needed progress in climate policy for aviation.
LINK
The development of sustainable aviation turns out to be a 30 year transition process. How to manage this transition process is a crucial for the change and success of the aviation sector in future. The foreseen solutions are mostly driven by technological innovation and improvements of procedures and regulations. The question is if these tools are sufficient to manage the innovation of an entire sector with 100 years legacy or are changes in business models, societal values and human behaviour part of the instrument mix aviation can use? New or adapted innovation models and tools are needed to use the full mix of instruments. The article explores the use of a modified Cyclic Innovation Model which is developed by researchers of TU Delft. The development of Schiphol Airport in Amsterdam and the outlook for its next 100 years is used as a case to understand the complexity of sustainable airport development.
MULTIFILE
Bird strikes, a risk factor in the aviation industry, are a common problem in certain states of the USA, while they are extremely rare in other states. Similarly, the seasonal distribution of bird strikes is not proportional. This situation poses an unfair situation in the aviation insurance of airline companies in terms of routes taken. The current study, detecting a literature gap related to the principal-agent problem within the aviation sector, evaluates the possible differences in aviation companies' insurance costs, assuming bird strikes are spatially and temporally analyzed in the US, and airline companies are provided with complete information regarding bird-strikes. In this research, QGIS software served in spatial model mappings. In terms of the threshold value, the study results show that making bird-strike insurance aircraft in twenty-one states which were below the threshold value increased the aviation costs of these airline companies, while in the remaining twenty-nine states, non-insurance raised the cost. In this context, as of 2022, it has been determined that not paying an extra premium for bird strikes in twenty-one states below the threshold value will create efficiency, while expending an above-average insurance premium in twenty-nine states and the District of Columbia above the threshold value will create efficiency. The research seeks to answer the following question: Is it fair for airlines operating on routes with low or high bird strike risks to pay the same amount of insurance cost?
DOCUMENT