To locate mating partners and essential resources such as food, oviposition sites and shelter, insects rely to a large extent on chemical cues. While most research has focused on cues derived from plants and insects, there is mounting evidence that indicates that micro‐organisms emit volatile compounds that may play an important role in insect behaviour. In this study, we assessed how volatile compounds emitted by phylogenetically diverse bacteria affected the olfactory response of the primary parasitoid Aphidius colemani and one of its secondary parasitoids, Dendrocerus aphidum. Olfactory responses were evaluated for volatile blends emitted by bacteria isolated from diverse sources from the parasitoid's habitat, including aphids, aphid mummies and honeydew, and from the parasitoids themselves. Results revealed that A. colemani showed a wide variation in response to bacterial volatiles, ranging from significant attraction over no response to significant repellence. Our results further showed that the olfactory response of A. colemani to bacterial volatile emissions was different from that of D. aphidum. Gas chromatography‐mass spectrometry analysis of the volatile blends revealed that bacterial strains repellent to A. colemani produced significantly higher amounts of esters, organic acids, aromatics and cycloalkanes than attractive strains. Strains repellent to D. aphidum produced significantly higher amounts of alcohols and ketones, whereas the strains attractive to D. aphidum produced higher amounts of the monoterpenes limonene, linalool and geraniol. Overall, our results indicate that bacterial volatiles can have an important impact on insect olfactory responses, and should therefore be considered as an additional, so far often overlooked factor in studying multitrophic interactions between plants and insects.
LINK
Matrix-assisted laser desorption/ionisation time of-flight mass spectrometry (MALDI-TOF MS) is a fast and reliable method for the identification of bacteria from agar media. Direct identification from positive blood cultures should decrease the time to obtaining the result. In this study, three different processing methods for the rapid direct identification of bacteria from positive blood culture bottles were compared. In total, 101 positive aerobe BacT/ALERT bottles were included in this study. Aliquots from all bottles were used for three bacterial processing methods, i.e. the commercially available Bruker's MALDI Sepsityper kit, the commercially available Molzym's MolYsis Basic5 kit and a centrifugation/washing method. In addition, the best method was used to evaluate the possibility of MALDI application after a reduced incubation time of 7 h of Staphylococcus aureus- and Escherichia coli-spiked (1,000, 100 and 10 colony-forming units [CFU]) aerobe BacT/ALERT blood cultures. Sixty-six (65%), 51 (50.5%) and 79 (78%) bottles were identified correctly at the species level when the centrifugation/washing method, MolYsis Basic 5 and Sepsityper were used, respectively. Incorrect identification was obtained in 35 (35%), 50 (49.5%) and 22 (22%) bottles, respectively. Gram-positive cocci were correctly identified in 33/52 (64%) of the cases. However, Gram-negative rods showed a correct identification in 45/47 (96%) of all bottles when the Sepsityper kit was used. Seven hours of pre-incubation of S. aureus- and E. coli-spiked aerobe BacT/ALERT blood cultures never resulted in reliable identification with MALDI-TOF MS. Sepsityper is superior for the direct identification of microorganisms from aerobe BacT/ALERT bottles. Gram-negative pathogens show better results compared to Gram-positive bacteria. Reduced incubation followed by MALDI-TOF MS did not result in faster reliable identification.
DOCUMENT
Application of animal manure to soils results in the introduction of manure-derived bacteria and their antimicrobial resistance genes (ARGs) into soils. ResCap is a novel targeted-metagenomic approach that allows the detection of minority components of the resistome gene pool without the cost-prohibitive coverage depths and can provide a valuable tool to study the spread of antimicrobial resistance (AMR) in the environment. We used high-throughput sequencing and qPCR for 16S rRNA gene fragments as well as ResCap to explore the dynamics of bacteria, and ARGs introduced to soils and adjacent water ditches, both at community and individual scale, over a period of three weeks. The soil bacteriome and resistome showed strong resilience to the input of manure, as manuring did not impact the overall structure of the bacteriome, and its effects on the resistome were transient. Initially, manure application resulted in a substantial increase of ARGs in soils and adjacent waters, while not affecting the overall bacterial community composition. Still, specific families increased after manure application, either through the input of manure (e.g., Dysgonomonadaceae) or through enrichment after manuring (e.g., Pseudomonadaceae). Depending on the type of ARG, manure application resulted mostly in an increase (e.g., aph(6)-Id), but occasionally also in a decrease (e.g., dfrB3) of the absolute abundance of ARG clusters (FPKM/kg or L). This study shows that the structures of the bacteriome and resistome are shaped by different factors, where the bacterial community composition could not explain the changes in ARG diversity or abundances. Also, it highlights the potential of applying targeted metagenomic techniques, such as ResCap, to study the fate of AMR in the environment.
DOCUMENT
This study aimed to evaluate technological (acidification, proteolysis, lipolysis, resistance to low pH, NaCl, and bile salts) and biopreservation (antimicrobial activity against foodborne pathogens) features of 1002 LAB by high throughput screening (HTS) methods. The LAB was isolated from 11 types of Brazilian artisanal cheeses (BAC) marketed in the main 5 producing regions. Remarkable intra-species variability in acidification rates have been found, which was most pronounced between isolates from Mina's artisanal cheeses, Caipira and Coalho cheeses. Lacticaseibacillus paracasei and Levilactobacillus brevis showed the fastest acidification rate; however, all isolates showed slower acidification rates than a lactococcal control strain (4.3 × lower). When testing inhibitory effects, > 75% of LAB isolates could inhibit the growth of Staphylococcus aureus ATCC 19095 and Listeria monocytogenes ATCC 7644. Two of these isolates, identified as Lactiplantibacillus plantarum and Lentilactobacillus buchneri, the sterile and neutral supernatants alone, were sufficient to inhibit L. monocytogenes growth. Principal component analysis (PCA) allowed the identification of functional groups based on proteolytic and lipolytic activity, osmotic stress resistance, and inhibition of L. monocytogenes. The type of cheese the isolates were recovered from influenced properties such as anti-listerial compounds and lipolytic enzyme production. The use of HTS and multivariate statistics allowed insights into a diverse set of LAB technological and biopreservation properties. These findings allow a profound knowledge of the heterogeneity of a large set of isolates, which can be further used to design starter cultures with varied and combined properties, such as biopreservation and technological features. Besides that, HTS makes it possible to analyze a vast panel of LAB strains, reducing costs and time within laboratory analysis, while avoiding the loss of information once all LAB are tested at the same time (differently from the traditional labor-intensive approach, in which a few numbers of strains is tested per time).
DOCUMENT
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NMon ILCs and other components of the serosal immune systemare scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NMmay lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NMon the serosal immune system.
DOCUMENT
Isolations of 3-chlorobenzoate (3CBA)-degrading aerobic bacteria under reduced O-2, partial pressures yielded organisms which metabolized 3CBA via the gentisate or the protocatechuate pathway rather than via the catechol route. The 3CBA metabolism of one of these isolates, L6, which,vas identified as an Alcaligenes species, was studied in more detail. Resting-cell suspensions of L6 pregrown on 3CBA oxidized all known aromatic intermediates of both the gentisate and the protocatechuate pathways. Neither growth th on nor respiration of catechol could be detected. Chloride production from 3CBA by L6 was strictly oxygen dependent. Cell-free extracts of 3CBA-grown L6 cells exhibited no catechol dioxygenase activity but possessed protocatechuate 3,4-dioxygenase, gentisate dioxygenase, and maleylpyruvate isomerase activities instead. In continuous culture with 3CBA as the sole growth substrate, strain L6 demonstrated an increased oxygen affinity with decreasing steady-state oxygen concentrations.
DOCUMENT
IL22 is an important cytokine involved in the intestinal defense mechanisms against microbiome. By using ileum-derived organoids, we show that the expression of anti-microbial peptides (AMPs) and anti-viral peptides (AVPs) can be induced by IL22. In addition, we identified a bacterial and a viral route, both leading to IL22 production by T cells, but via different pathways. Bacterial products, such as LPS, induce enterocyte-secreted SAA1, which triggers the secretion of IL6 in fibroblasts, and subsequently IL22 in T cells. This IL22 induction can then be enhanced by macrophage-derived TNFα in two ways: by enhancing the responsiveness of T cells to IL6 and by increasing the expression of IL6 by fibroblasts. Viral infections of intestinal cells induce IFNβ1 and subsequently IL7. IFNβ1 can induce the expression of IL6 in fibroblasts and the combined activity of IL6 and IL7 can then induce IL22 expression in T cells. We also show that IL22 reduces the expression of viral entry receptors (e.g. ACE2, TMPRSS2, DPP4, CD46 and TNFRSF14), increases the expression of anti-viral proteins (e.g. RSAD2, AOS, ISG20 and Mx1) and, consequently, reduces the viral infection of neighboring cells. Overall, our data indicates that IL22 contributes to the innate responses against both bacteria and viruses.
DOCUMENT
The “as eaten” method to measure the Total Dietary Fibre content and an in vitro fermentation with colon bacteria were successfully coupled to see if fibre fractions have a prebiotic effect. Similar growth pattern for modified starch, FOS and GOS were observed (Fig A). The qPCR results indicate a significant stimulation of the growth of gut bacteria by FOS and GOS and in lesser extent by the modified starch (Fig.C). Future experiments will compare the qPCR data with metagenomic analysis of in vitro and in vivo experiments.
DOCUMENT
With the alarming rise of antimicrobial resistance, studies on bacteria-surface interactions are both relevant and timely. Scanning electron microscopy and colony forming unit counting are commonly used techniques but require sophisticated sample preparation and long incubation time. Here, we present a direct method based on molecular dynamics simulation of nanostructured surfaces providing in silico predictions, complemented with time-lapse fluorescence imaging to study live interactions of bacteria at the membrane-substrate level. We evaluate its effectiveness in predicting and statistically analyzing the temporal evolution and spatial distribution of prototypical bacteria with costained nucleoids and membranes (E. coli) on surfaces with nanopillars. We observed cell reorientation, clustering, membrane damage, growth inhibition, and in the extreme case of hydrocarbon-coated nanopillars, this was followed by cell disappearance, validating the obtained simulation results. Contrary to commonly used experimental methods, microscopy data are fast processed, in less than 1 h. In particular, the bactericidal effects can be straightforwardly detected and correlated with surface morphology and/or wettability.
LINK
Antibiotics are a factor in developing antibiotic resistance in the environment. Outbreaks due to pathogens and resistant bacteria are an emerging issue in this decade. Resistance of Escherichia coli to two groups of antibiotics has been revised recently by the World Health Organization (WHO). These data showed that bacteria have already developed resistance to third and fourth group of antibiotics. The WHO report on surveillance and antibiotics consumption evaluation showed that antibiotic consumption varies in EU countries. Outbreaks have increased in parallel to these data depending on country, season, sex, and age group. This chapter revises the routes of spreading and surveillance of E. coli. There is a particular focus on water sources including hospitals, urban wastewater treatment plants (UWTPs), diffuse sources, and water reuse. Extensively revised data are given on the control techniques by biological and advanced processes. The emerging issue of gene transfer control in parallel to the control of bacteria is expressed. A detailed literature survey of emerging technologies of photocatalysis and nanoparticles is given.
LINK