Abstract: Climate change is related with weather extremes, which may cause damages to infrastructure used by freight transport services. Heavy rainfall may lead to flooding and damage to railway lines, roads and inland waterways. Extreme drought may lead to extremely low water levels, which prevent safe navigation by inland barges. Wet and dry periods may alternate, leaving little time to repair damages. In some Western and Middle-European countries, barges have a large share in freight transport. If a main waterway is out of service, then alternatives are called for. Volume- and price-wise, trucking is not a viable alternative. Could railways be that alternative? The paper was written after the unusually long dry summer period in Europe in 2022. It deals with the question: If the Rhine, a major European waterway becomes locally inaccessible, could railways (temporarily) play a larger role in freight transport? It is a continuation of our earlier research. It contains a case study, the data of which was fed into a simulation model. The model deals with technical details like service specification route length, energy consumption and emissions. The study points to interesting rail services to keep Europe’s freight on the move. Their realization may be complex especially in terms of logistics and infrastructure, but is there an alternative?
MULTIFILE
In dit boekje vindt u inspirerende logistieke innovaties die studenten van de minor Airport Seaport Logistics de afgelopen vier jaar zijn tegengekomen tijdens hun contacten met het logistieke MKB.
DOCUMENT
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.
DOCUMENT