Waste separation at companies is considered a priority to achieve a circular and sustainable society. This research explores behaviour change poli-cies for separating the organic fraction of municipal solid waste (OFMSW) at Small and Medium Enterprises (SMEs), particularly in cities. At SMEs, co-work-ers are responsible for waste disposal. Therefore, their behavioural intention to-wards pro-environmental action plays a major role. In this study, we have used agent-based modelling and simulation to explore the waste behaviour of the ac-tors in the system. The models were co-created in participatory workshops, sur-veys and interviews with stakeholders, domain experts and relevant actors. Ad-ditionally, we co-created and tested practical social and technical interventions with the model. We used the collaborative modelling method Lange reported to conceptualise, implement, test and validate the models. Five policies that affect waste separation behaviour were included in the model. The model and simula-tion results were cross-validated with the help of a literature study. The results were validated through experts and historical data to sketch a generalisable idea of networks with similar characteristics. These results indicate that combinations of behaviour profiles and certain policy interventions correlate with waste sepa-ration rates. In addition, individual waste separation policies are often limitedly capable of changing the behaviour in the system. The study also shows that the intention of co-workers concerning environmental behaviour can significantly impact waste separation rates. Future work will include the role of households, policies supporting separating multiple waste types, and the effect of waste sep-aration on various R-strategies.
(‘Co’-)Designing for healthy behaviour greatly benefits from integrating insights about individual behaviour and systemic influences. This study reports our experiences in using insights about individual and systemic determinants of behaviour to inform a large co-design project. To do so, we used two design tools that encourage focusing on individual determinants (Behavioural Lenses Approach) and social / systemic aspects of behaviour (Socionas). We performed a qualitative analysis to identify 1) when and how the team applied the design tools, and 2) how the tools supported or obstructed the design process. The results show that both tools had their distinctive uses during the process. Both tools improved the co-design process by deepening the conversations and underpinnings of the prototypes. Using the Behavioural Lenses under the guidance of a behavioural expert proved most beneficial. Furthermore, the Socionas showed the most potential when interacting with stakeholders, i.c. parents and PPTs.
MULTIFILE
PurposeDespite their growing popularity among organisations, satisfaction with activity-based work (ABW) environments is found to be below expectations. Research also suggests that workers typically do not switch frequently, or not at all, between different activity settings. Hence, the purpose of this study is to answer two main questions: Is switching behaviour related to satisfaction with ABW environments? Which factors may explain switching behaviour?Design/methodology/approachQuestionnaire data provided by users of ABW environments (n = 3,189) were used to carry out ANOVA and logistic regression analyses.FindingsSatisfaction ratings of the 4 per cent of the respondents who switched several times a day appeared to be significantly above average. Switching frequency was found to be positively related to heterogeneity of the activity profile, share of communication work and external mobility.Practical implicationsOur findings suggest that satisfaction with ABW environments might be enhanced by stimulating workers to switch more frequently. However, as strong objections against switching were observed and switching frequently does not seem to be compatible with all work patterns, this will presumably not work for everyone. Many workers are likely to be more satisfied if provided with an assigned (multifunctional) workstation.Originality/valueIn a large representative sample, clear evidence was found for relationships between behavioural aspects and appreciation of ABW environments that had not been studied previously.
LINK
This PD project aims to gather new knowledge through artistic and participatory design research within neighbourhoods for possible ways of addressing and understanding the avoidance and numbness caused by feelings of vulnerability, discomfort and pain associated with eco-anxiety and chronic fear of environmental doom. The project will include artistic production and suitable forms of fieldwork. The objectives of the PD are to find answers to the practice problem of society which call for art that sensitises, makes aware and helps initiate behavioural change around the consequences of climate change. Rather than visualize future sea levels directly, it will seek to engage with climate change in a metaphorical and poetic way. Neither a doom nor an overly techno-optimistic scenario seem useful to understand the complexity of flood risk management or the dangers of flooding. By challenging both perspectives with artistic means, this research hopes to counter eco-anxiety and create a sense of open thought and susceptibility to new ideas, feelings and chains of thought. Animation and humour, are possible ingredients. The objective is to find and create multiple Dutch water stories, not just one. To achieve this, it is necessary to develop new methods for selecting and repurposing existing impactful stories and strong images. Citizens and students will be included to do so via fieldwork. In addition, archival materials will be used. Archives serve as a repository for memory recollection and reuse, selecting material from the audiovisual archive of the Institute of Sound & Vision will be a crucial part of the creative work which will include two films and accompanying music.
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.
PBL is the initiator of the Work Programme Monitoring and Management Circular Economy 2019-2023, a collaboration between CBS, CML, CPB, RIVM, TNO, UU. Holidays and mobility are part of the consumption domains that PBL researches, and this project aims to calculate the environmental gains per person per year of the various circular behavioural options for both holiday behaviour and daily mobility. For both behaviours, a range of typical (default) trips are defined and for each several circular option explored for CO2 emissions, Global warming potential and land use. The holiday part is supplied by the Centre for Sustainability, Tourism and Transport (CSTT) of the BUas Academy of Tourism (AfT). The mobility part is carried out by the Urban Intelligence professorship of the Academy for Built Environment and Logistics (ABEL).The research question is “what is the environmental impact of various circular (behavioural) options around 1) holidays and 2) passenger mobility?” The consumer perspective is demarcated as follows:For holidays, transportation and accommodation are included, but not food, attractions visited and holiday activitiesFor mobility, it concerns only the circular options of passenger transport and private means of transport (i.e. freight transport, business travel and commuting are excluded). Not only some typical trips will be evaluated, but also the possession of a car and its alternatives.For the calculations, we make use of public databases, our own models and the EAP (Environmental Analysis Program) model developed by the University of Groningen. BUAs projectmembers: Centre for Sustainability, Tourism and Transport (AT), Urban Intelligence (ABEL).