Previous research shows that automatic tendency to approach alcohol plays a causal role in problematic alcohol use and can be retrained by Approach Bias Modification (ApBM). ApBM has been shown to be effective for patients diagnosed with alcohol use disorder (AUD) in inpatient treatment. This study aimed to investigate the effectiveness of adding an online ApBM to treatment as usual (TAU) in an outpatient setting compared to receiving TAU with an online placebo training. 139 AUD patients receiving face-to-face or online treatment as usual (TAU) participated in the study. The patients were randomized to an active or placebo version of 8 sessions of online ApBM over a 5-week period. The weekly consumed standard units of alcohol (primary outcome) was measured at pre-and post-training, 3 and 6 months follow-up. Approach tendency was measured pre-and-post ApBM training. No additional effect of ApBM was found on alcohol intake, nor other outcomes such as craving, depression, anxiety, or stress. A significant reduction of the alcohol approach bias was found. This research showed that approach bias retraining in AUD patients in an outpatient treatment setting reduces the tendency to approach alcohol, but this training effect does not translate into a significant difference in alcohol reduction between groups. Explanations for the lack of effects of ApBM on alcohol consumption are treatment goal and severity of AUD. Future ApBM research should target outpatients with an abstinence goal and offer alternative, more user-friendly modes of delivering ApBM training.
MULTIFILE
While traditional crime rates are decreasing, cybercrime is on the rise. As a result, the criminal justice system is increasingly dealing with criminals committing cyber-dependent crimes. However, to date there are no effective interventions to prevent recidivism in this type of offenders. Dutch authorities have developed an intervention program, called Hack_Right. Hack_Right is an alternative criminal justice program for young first-offenders of cyber-dependent crimes. In order to prevent recidivism, this program places participants in organizations where they are taught about ethical hacking, complete (technical) assignments and reflect on their offense. In this study, we have evaluated the Hack_Right program and the pilot interventions carried out thus far. By examining the program theory (program evaluation) and implementation of the intervention (process evaluation), the study adds to the scarce literature about cybercrime interventions. During the study, two qualitative research methods have been applied: 1) document analysis and 2) interviews with intervention developers, imposers, implementers and participants. In addition to the observation that the scientific basis for linking specific criminogenic factors to cybercriminals is still fragile, the article concludes that the theoretical base and program integrity of Hack_Right need to be further developed in order to adhere to principles of effective interventions.
Reporting of research findings is often selective. This threatens the validity of the published body of knowledge if the decision to report depends on the nature of the results. The evidence derived from studies on causes and mechanisms underlying selective reporting may help to avoid or reduce reporting bias. Such research should be guided by a theoretical framework of possible causal pathways that lead to reporting bias. We build upon a classification of determinants of selective reporting that we recently developed in a systematic review of the topic. The resulting theoretical framework features four clusters of causes. There are two clusters of necessary causes: (A) motivations (e.g. a preference for particular findings) and (B) means (e.g. a flexible study design). These two combined represent a sufficient cause for reporting bias to occur. The framework also features two clusters of component causes: (C) conflicts and balancing of interests referring to the individual or the team, and (D) pressures from science and society. The component causes may modify the effect of the necessary causes or may lead to reporting bias mediated through the necessary causes. Our theoretical framework is meant to inspire further research and to create awareness among researchers and end-users of research about reporting bias and its causes.
Receiving the first “Rijbewijs” is always an exciting moment for any teenager, but, this also comes with considerable risks. In the Netherlands, the fatality rate of young novice drivers is five times higher than that of drivers between the ages of 30 and 59 years. These risks are mainly because of age-related factors and lack of experience which manifests in inadequate higher-order skills required for hazard perception and successful interventions to react to risks on the road. Although risk assessment and driving attitude is included in the drivers’ training and examination process, the accident statistics show that it only has limited influence on the development factors such as attitudes, motivations, lifestyles, self-assessment and risk acceptance that play a significant role in post-licensing driving. This negatively impacts traffic safety. “How could novice drivers receive critical feedback on their driving behaviour and traffic safety? ” is, therefore, an important question. Due to major advancements in domains such as ICT, sensors, big data, and Artificial Intelligence (AI), in-vehicle data is being extensively used for monitoring driver behaviour, driving style identification and driver modelling. However, use of such techniques in pre-license driver training and assessment has not been extensively explored. EIDETIC aims at developing a novel approach by fusing multiple data sources such as in-vehicle sensors/data (to trace the vehicle trajectory), eye-tracking glasses (to monitor viewing behaviour) and cameras (to monitor the surroundings) for providing quantifiable and understandable feedback to novice drivers. Furthermore, this new knowledge could also support driving instructors and examiners in ensuring safe drivers. This project will also generate necessary knowledge that would serve as a foundation for facilitating the transition to the training and assessment for drivers of automated vehicles.