“Duurzaamheid”, het is één van de termen die tegenwoordig niet meer weg te denken zijn uit het nieuws, de reclames en vele netwerkbijeenkomsten. Duurzaam ondernemen, duurzaam wonen, duurzame energievoorziening, duurzame producten, gaat er een dag aan ons voorbij dat we niet worden herinnerd aan het belang van een duurzame levensstijl om er voor te zorgen dat deze wereld ook voor onze kinderen en achterkleinkinderen nog een fijne natuurlijke wereld mag zijn om in te leven? Op het gebied van duurzame materialen kregen zo biopolymeren en gerecyclede kunststoffen de aandacht. In dit boekje worden biopolymeren belicht. Daarbij wordt vooral ook aandacht besteed aan de discussie of biopolymeren nou wel echt zo milieuvriendelijk en duurzaam zijn als dat ze lijken. Dit boekje is opgesteld om ontwerpers en bedrijven die zich bezig houden met productontwikkeling praktische (eerste) informatie te bieden over biopolymeren. Naast definities, voor- en nadelen, technieken, toepassingsgebieden, soorten, eigenschappen en regelgeving zal ook een roadmap gegeven worden die inzicht geeft in welke biopolymeren er al zijn en welke er nog verwacht kunnen worden.
MULTIFILE
Positioning paper bij de inauguratie van Vincent Voet als lector Circular Plastics.
DOCUMENT
‘Ontwerpen met biobased plastics’ is de eindpublicatie van het project “Design Challenges with Biobased Plastics”. In dit onderzoeksproject deed de HvA, samen met diverse mkb-bedrijven onderzoek naar de kennis een tools die ontwerpers nodig hebben om biobased plastics, kunststoffen van hernieuwbare materialen, toe te passen. De publicatie gaat in op de kansen die biobased plastics bieden en biedt praktische tools, inspirerende voorbeelden en handreikingen die het ontwerpen met deze materialen makkelijker maken.
DOCUMENT
In het dagelijks leven hebben we voortdurend met verschillende plastics te maken. Overal om ons heen komen we plastics tegen. Denk bijvoorbeeld aan verpakkingsmaterialen, flessen, flacons, kratten, tapijten en plastic draagtassen. Een leven zonder kunststoffen is in onze huidige maatschappij vrijwel ondenkbaar geworden. In 2014 werd er volgens Plastics Europe [1] wereldwijd maar liefst 311.000.000 ton aan kunststoffen geproduceerd, in 1950 was dit nog slechts 1.700.000 ton. Vanaf 1950 stijgt de wereldwijde productie van kunststoffen met gemiddeld 9% per jaar. Bij de huidige productiecapaciteit komt dit volgens Plastics Europe neer op gemiddeld 40 kg/jaar per hoofd van de wereldbevolking! Naar verwachting zal het gebruik van plastics verder toenemen naar gemiddeld 87 kg/jaar per hoofd van de wereldbevolking in het jaar 2050. In Nederland ligt het verbruik momenteel op gemiddeld 126 kg per inwoner. Maar volgens prognoses van VLEEM (Very Long Term Energy Environment Model) [2] zal dit groeien naar gemiddeld 220 kg per inwoner in 2050!! De toenemende vraag naar plastics wordt mede veroorzaakt omdat plastics op zich een gemakkelijk te verwerken materiaal is. Plastics zijn relatief goedkoop, hebben een lage specifieke dichtheid (t.o.v. bijvoorbeeld metalen), en zijn snel en gemakkelijk verwerkbaar.
DOCUMENT
Heeft plastic op basis van aardolie zijn langste tijd gehad? Steeds meer bedrijven in binnen- en buitenland gaan over op het gebruik van kunststoffen die worden geproduceerd uit natuurlijke hernieuwbare grondstoffen, zoals maïs, aardappels en suikerbieten. Deze zogenaamde biopolymeren zijn niet nieuw, maar wel zeer actueel. Het Kenniscentrum Design en Technologie van Saxion heeft,als onderdeel van het innovatieprogramma Materialen in Ontwerp, een praktijkgericht onderzoek uitgevoerd naar het gebruik van biopolymeren. Hierin is samengewerkt met de Verenigde Maakindustrie Oost, Industrial Design Centre, ontwerpbureau D 'Andrea en Evers en Syntens. Het innovatieprogramma staat onder leiding van de Saxion-lectoren Karin van Beurden, lector Product Design, en Ger Brinks, lector Smart Functional Materials en is gericht op het creëren van praktisch toepasbare kennis in door bedrijven aangedragen vragen en onderwerpen. Daartoe organiseert Saxion specifieke workshops en projecten, waarbij het experts, deskundigen en studenten inzet. Het innovatieprogramma wordt mogelijk gemaakt door gelden van RAAK SIA Regionale Aandacht en Actie voor Kenniscirculatie).
MULTIFILE
Onderzoeksuitkomsten van het Saxion-project Materialen in Ontwerp, thema Milieubewust verpakken. SP Packaging (Enschede) heeft zich gespecialiseerd in flexibele non-food verpakkingen. De markt vraagt naar milieuvriendelijkere vervangers voor de huidige verpakkingsmaterialen, zoals de kunststoffen PP, PE en PVC. In het project is onderzoek gedaan naar verkrijgbare milieuvriendelijke verpakkingsmaterialen. Leveranciers zijn benaderd, beurzen zijn bezocht en materialen zijn onderzocht. Generiek heeft het project een interactief schema opgeleverd, waarin alle verschillende eigenschappen van de milieuvriendelijke en de huidige materialen worden weergegeven en waardoor eenvoudig een keus gemaakt kan worden uit de beschikbare materialen en hun eigenschappen. Per toepassingssituatie kan het schema worden aangepast om tot een eenvoudige keuze te komen. Specifiek voor SP Packaging is dit schema ook toegepast op basis van een vooraf opgesteld programma van eisen. Er is gebleken dat het gewenste materiaal voor SP Packaging op dit moment nog niet op de markt is, de beperkingen waarover de verschillende materialen beschikken zijn nog te groot om direct toe te passen in de bestaande productie. Noodzakelijke productie aanpassingen, bijzondere voorwaarden voor opslag en transport van het materiaal en het niet in alle opzichten geschikt zijn voor flexibele presentatie verpakkingen vormen de huidige bottle-necks. In een brainstormsessie en uit de vervolg ontwerpsessies zijn diverse concepten bedacht, die potentie hebben. De bestaande concepten en wijze van verpakken en aanbieden aan de klant zullen hierdoor wel ingrijpend veranderen. De conslusie van het onderzoek voor SP Packaging is dat er op dit moment geen materiaal op de markt is dat de huidige kunststoffen voldoende zou kunnen vervangen. Er zijn concepten aangereikt hoe met de nieuwe materialen om te gaan d.m.v. andere verpakkingsconcepten en andere methoden van aanbieden aan de klant.
MULTIFILE
De overgang van traditionele textiel naar biotextiel kan omschreven worden als een paradigmaverandering, in grote lijnen parallel aan de komst van biotechnologie. Dit wordt vaak geassocieerd met begrippen als creatieve destructie, waarbij nieuwe innovatieve industrieën de bestaande achterhaald doen raken. Maar biopolymeren zijn er altijd al geweest. Wat opvalt, is hier niet het radicale van de verandering, maar de mogelijkheid om nieuwe technologieën en materialen toe te passen en te reageren op vragen van de markt en mondiale omstandigheden. In dit rapport wordt een overzicht gegeven van het gebruik van de meest voorkomende biopolymeren in geotextieltoepassingen, dus toepassingen in bijvoorbeeld de weg- en waterbouw of in de agro-industrie. Biopolymeren worden als volgt gedefinieerd: ‘polymeren die worden geproduceerd uit natuurlijke hernieuwbare grondstoffen’. Dit zijn bijvoorbeeld: • Duurzame beschikbare (delen van) planten en dieren (ook aquatische biomassa). • Primaire residuen (bermgras, houtafval, ...). • Secundaire residuen (bietenpulp, bierborstel, ...). • Tertiaire residuen (dierlijk vet, GFT, ...). Biobased houdt in dat een polymeer uit natuurlijke, dierlijke of hernieuwbare grondstof bestaat. Dit geeft een grotere onafhankelijkheid van de klassieke grondstofproducenten, zoals de aardolie- en gasproducenten. Echter moet bedacht worden dat er weer een afhankelijkheid van andere grondstofproducenten kan ontstaan. Natuurlijke grondstoffen zijn de meest bekende. Er is bijvoorbeeld cellulose uit katoen, vlas van de vlasplant of brandnetelvezel van de brandnetel. Onder dierlijke grondstoffen verstaan we onder andere chitosan uit schaaldieren. Een hernieuwbare grondstof is bijvoorbeeld zetmeel/suiker voor PLA (polymelkzuur. Deze biopolymeren worden besproken om duidelijk te maken welke soorten wel of niet geschikt zijn voor verschillende toepassingen in geotextiel. Een verder onderscheid wordt wel gemaakt op basis hun ‘end of life’: biodegradeerbaar en composteerbaar. Een materiaal is biodegradeerbaar wanneer de afbraak het gevolg is van de actie van micro-organismen (zwammen, bacteriën), waardoor het materiaal uiteindelijk wordt omgezet in water, biomassa, CO2 en/of methaan, ongeacht de tijd die hiervoor nodig is. Composteerbaar wil zeggen dat stoffen worden afgebroken bij het composteren met een snelheid die vergelijkbaar is met die van andere bekende composteerbare materialen (bijvoorbeeld groenafval). Met andere woorden: een materiaal is composteerbaar wanneer het afbraakproces compatibel is met de omgevingsomstandigheden van een huishoudelijke of industriële composteerinstallatie, zoals temperatuur, vochtigheid en tijd. Hierbij dient te worden opgemerkt dat composteerbare materialen biodegradeerbaar zijn, maar niet alle biodegradeerbare materialen zijn composteerbaar. In de geotextiel bestaan twee grote verschillen in toepassingen. De permanente of houdbare toepassingen en de degradeerbare toepassingen. Oeverbescherming is een goed voorbeeld van een degradeerbaar product. Een nieuwe oever bestaat voor een groot deel uit los zand. Om ervoor te zorgen dat de oever door bijvoorbeeld erosie niet verdwijnt, worden er kokosmatten gebruikt voor versteviging. Op deze kokosmatten vormt zich op den duur een nieuw ecosysteem. De kokosmatten zullen dan na een aantal jaren composteren zonder vervuilende grondstoffen in de aarde achter te laten. Maar in bijvoorbeeld wegen of bij viaducten, wordt versteviging toegepast met als doel langdurig functiebehoud van het polymeer. In dit rapport is een tabel opgenomen met daarin de behandelde biopolymeren met de belangrijkste eigenschappen. Zo kan bijvoorbeeld een geotextiel producent de meest optimale keuze maken voor de grondstoffen voor haar producten. Ook is een figuur opgenomen, waarin een verzameling aan geotoepassingen en biopolymeren (met degradeerbaar/biobased labels) in een overzicht is gezet. Biopolymeren kunnen,
MULTIFILE
Dit boek is het resultaat van het SIA Raak MKB project “Biocomposieten voor civiele en bouwkundige toepassingen; Biobased brug”. Het is geschreven voor bedrijfsleven en studenten van het MBO, het HBO en de universiteiten. Het project leverde een haalbaarheidsonderzoek van een volledig biocomposieten voetgangersbrug. Materialenonderzoek bij Inholland Composites en stijfheid en sterkte berekeningen toonden aan dat een volledig biocomposieten voetgangersbrug haalbaar was. De Dommelbrug is met succes door ruim 100 studenten gebouwd.
DOCUMENT
Om de toepassing van biobased plastics te stimuleren is een belangrijke rol weggelegd voor ontwerpers. Omdat zowel gevestigdeontwerpers als studenten weinig tot geen kennis hebben van biobased plastics, doet de Hogeschool van Amsterdam (HvA) onderzoek naar verschillende aspecten van ontwerpen met biobased plastics.
MULTIFILE
Grondstoffen schaarste is een van de grootste uitdagingen voor de textielindustrie. Dit wordt veroorzaakt door afnemende of beperkte voorraden grondstoffen, olie, water en land terwijl de vraag toeneemt o.a. door toenemende welvaart en industriële activiteit zoals bijv. in China en India. Dit is een wereldwijd verschijnsel en het leidt tot meer onderlinge afhankelijkheden tussen landen en regio’s.Er zullen dan ook maatregelen genomen moeten worden om hier een goed antwoord op te vinden en de volgende actielijnen moeten in gang worden gezet: Betere/meer efficiënt productie- en distributie keten Efficiëntere productiesystemen zoals digitale processen Beperking van grondstoffengebruik en recycling van materialen Vervangen van traditionele grondstoffen door nieuwe minder belastende materialen. Aanpassen van het ontwerp proces, rekening houdend met recycling en gerecyclede materialen. De problemen van de industriële textielketen en de impact ervan op het milieu worden niet alleen veroorzaakt door inefficiënte en vervuilende processen maar ook door een zeer ondermaatse order- en productieketen. Duurzaamheid is allang het stadium van trend ontgroeid. Het is een keiharde noodzaak geworden om op onze begrensde aarde te overleven. De focus ligt dan ook op het belang voor de toekomstige generaties. Echter in de driehoek People – Planet – Profit (door sommigen ook ingevuld als Prosperity) is het van groot belang om te optimaliseren binnen deze driehoek. Zonder het aspect profit mee te wegen gebeurt er niets. Recycling is een belangrijk thema om bovengenoemde problemen aan te pakken. Al tijdens het ontwerp van producten kan al rekening gehouden worden met recycling. Door materiaalkeuze kan verlenging van de levens- of gebruiksduur verkregen worden, bijv. door minder slijtage of sterkere materialen te gebruiken. Dit is een reële optie. Doel is dan om al tijdens het ontwerp van textiele producten, incl. de aan te brengen functies en gebruik een product zodanig vormgeven dat hergebruik een goede optie is. Biopolymeren zijn materialen met een natuurlijke herkomst en zijn al in gebruik sinds mensenheugenis. Vooral in de textielindustrie is het gebruik van biomaterialen natuurlijk allang gemeengoed, denk aan katoen, wol, zijde maar ook aan geregenereerde cellulose als bijv. Lyocell. Het gebruik van biopolymeren in de textielindustrie verlaagt de druk op schaarse. Op olie gebaseerde synthetische materialen, of kostbare grondstoffen. Aantoonbaar duurzaam vereist onderbouwing door rationele analyse om greenwashing tegen te gaan.Duurzaam vereist ook een keten benadering: de gehele keten speelt hierin mee dus ook de textielproducenten. Hiervoor is het nodig om een analyse te maken van de inzet van huidige materialen en te onderzoeken op welke wijze die vervangen kunnen worden door biobased materialen. Digitaliseren van de textielketen lijktook een methode om de duurzaamheid van de keten te verbeteren. Made-to-measure en individualisatie zijn belangrijke drivers voor de digitalisering van de textielketen. Goedkope bodyscanners en de beschikbaarheid van goede digitale printers zijn belangrijke enablers, waardoor de traditionele textielindustrie in de komende jaren een belangrijke transformatie zal ondergaan.De technologische doorbraken die hierachter zitten worden gedreven door de opkomende vraag naar mass customization en de noodzaak van ecologisch vriendelijke processen.Dat betekent dus een productiesysteem waarin alle nog noodzakelijke unit operations aan elkaar gekoppeld zijn tot een samenhangend geheel: de “factory of the future”. Traditioneel was het doek de verbindende schakel tussen de verschillende stappen. In de nieuwe situatie is digitale informatie en input/output variabelen. Uit het voorgaande kan geconcludeerd worden dat er enorm geïnvesteerd moet<
MULTIFILE