In the housing market enormous challenges exist for the retrofitting of existing housing in combination with the ambition to realize new environmentally friendly and affordable dwellings. Bio-based building materials offer the possibility to use renewable resources in building and construction. The efficient use of bio-based building materials is desirable due to several potential advantages related to environmental and economic aspects e.g. CO2 fixation and additional value. The potential biodegradability of biomaterials however demands also in-novative solutions to avoid e.g. the use of environmental harmful substances. It is essential to use balanced technological solutions, which consider aspects like service life or technical per-formance as well as environmental aspects. Circular economy and biodiversity also play an im-portant role in these concepts and potential production chains. Other questions arise considering the interaction with other large biomass users e.g. food production. What will be the impact if we use more bio-based building materials with regard to biodiversity and resource availability? Does this create opportunities or risks for the increasing use of bio-based building materials or does intelligent use of biomass in building materials offer the possibility to apply still unused (bio) resources and use them as a carbon sink? Potential routes of intelligent usage of biomass as well as potential risks and disadvantages are highlighted and discussed in relation to resource efficiency and decoupling concept(s).
DOCUMENT
De boeren en de overheid hoeven in de stikstofcrisis niet elkaars tegenstander te zijn. Zo zijn er experimenten waarbij boeren helpen om het woningtekort aan te pakken
LINK
This document combines four reports on existing regional business support programmes for inclusion or understanding of circular economy (CE) objectives, deliverable DT3.1.2 from the transform-CE project. Besides a general overview on national and regional level, the focus is on a selection of national and regional programmes aimed at the plastics industry. After explaining the format to structure the programmes, the results for the four regions are presented: Greater Manchester (UK), Rhineland Palatinate and North-Rhine Westphalia (DE), Wallonia (BE), Central Netherlands (NL).
MULTIFILE
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
The research for alternatives to substitute cement in concrete increased in the last years to reduce the environmental impact. Geopolymers or alkali-activated materials are one of the options. The proposed project aims to obtain a wet cell based on a geopolymer with alginate and natural fibres. The wet cell will be a final prototype composed of panels for wet construction areas such as bathrooms and kitchens. There is a lack of biobased solutions for wet areas currently in the market. And the present project, together with companies of suppliers and users from the market, aims to provide a solution for a wet cell using biobased materials. The natural fibres added to the geopolymer will substitute a portion of sand and gravel, producing a lighter product than concrete. Also, the fibres increase the thermal and acoustic insulation. Natural fibres should be pretreated to increase the bond with other materials in the mixture. The chemical used in the alkali-activated materials is the same to pretreat the fibres. Also, alginates extracted from seaweeds can be used as binders, and alkali is used in the extraction process. One of the objectives is to develop the method and technique to produce geopolymer with alginates and pretreat the fibre simultaneously during the mixture. After defining the optimum mixture for the geopolymer, panels will be produced, and in the end, a wet cell will be constructed with the geopolymer panels.
Recent research by the renowned Royal Institution of Chartered Surveyors (RICS) shows that more than 2/3 of all CO2 is emitted during the building process and less than 1/3 during use to heat the building and the tap water. Lightweight, local and biobased materials such as biocomposites to replace concrete and fossil based cladding are in the framework of climate change, a necessity for future building. Using plant fiber in polymer composites is especially interesting for construction since natural fibers exhibit comparative good mechanical properties with small specific weight, which defines the potential for lightweight constructions. The use of renewable resources, will affect the ecosystem favorably and the production costs of construction materials could also decrease. However, one disadvantage of natural fibers in plastics is their hydrophilic properties. In construction the materials need to meet special requirements like the resistance against fluctuating weather conditions (Ticoalu et al., 2010). In contrast to synthetic fibers, the natural ones are more moisture- and UV-radiation-sensitive. That may lead to degradation of these materials and a decreasing in quality of products. (Lopez et al., 2006; Mokhothu und John, 2017) Tanatex and NPSP have approached CoE BBE/Avans to assist in a study where fibres impregnated with the (modified) Tanatex products will be used for reinforcement of thermoset biopolymers. The influence of the different Tanatex products on the moisture absorption of natural/cellulosic fibers and the adhesion on the fibers on main composite matrix will be measured. The effect of Tantex products can optimize the bonding reaction between the resin and the fibers in the (bio) composite and result to improved strength and physico-chemical properties of the biocomposite materials. (word count: 270)