Senior co-housing communities offer an in-between solution for older people who do not want to live in an institutional setting but prefer the company of their age peers. Residents of co-housing communities live in their own apartments but undertake activities together and support one another. This paper adds to the literature by scrutinizing the benefits and drawbacks of senior co-housing, with special focus on the forms and limits of social support and the implications for the experience of loneliness. Qualitative fieldwork was conducted in eight co-housing communities in the Netherlands, consisting of document analysis, interviews, focus groups, and observations. The research shows that co-housing communities offer social contacts, social control, and instrumental and emotional support. Residents set boundaries regarding the frequency and intensity of support. The provided support partly relieves residents’ adult children from caregiving duties but does not substitute formal and informal care. Due to their access to contacts and support, few residents experience social loneliness. Co-housing communities can potentially also alleviate emotional loneliness, but currently, this happens to a limited degree. The paper concludes with practical recommendations for enhancing the benefits and reducing the drawbacks of senior co-housing. Original article at MDPI; DOI: https://doi.org/10.3390/ijerph16193776
MULTIFILE
Abstract: Aureobasidium is omnipresent and can be isolated from air, water bodies, soil, wood, and other plant materials, as well as inorganic materials such as rocks and marble. A total of 32 species of this fungal genus have been identified at the level of DNA, of which Aureobasidium pullulans is best known. Aureobasidium is of interest for a sustainable economy because it can be used to produce a wide variety of compounds, including enzymes, polysaccharides, and biosurfactants. Moreover, it can be used to promote plant growth and protect wood and crops. To this end, Aureobasidium cells adhere to wood or plants by producing extracellular polysaccharides, thereby forming a biofilm. This biofilm provides a sustainable alternative to petrol-based coatings and toxic chemicals. This and the fact that Aureobasidium biofilms have the potential of self-repair make them a potential engineered living material avant la lettre. Key points: •Aureobasidium produces products of interest to the industry •Aureobasidium can stimulate plant growth and protect crops •Biofinish of A. pullulans is a sustainable alternative to petrol-based coatings •Aureobasidium biofilms have the potential to function as engineered living materials.
Currently the advances in the field of 3D printing are causing a revolution in the (bio-)medical field. With applications ranging from patient-specific anatomical models for surgical preparation to prosthetic limbs and even scaffolds for tissue engineering, the possibilities seem endless. Today, the most widely used method is FDM printing. However, there is still a limited range of biodegradable and biocompatible materials available. Moreover, printed implants like for instance cardiovascular stents require higher resolution than is possible to reach with FDM. High resolution is crucial to avoid e.g. bacterial growth and aid to mechanical strength of the implant. For this reason, it would be interesting to consider stereolithography as alternative to FDM for applications in the (bio-) medical field. Stereolithography uses photopolymerizable resins to make high resolution prints. Because the amount of commercially available resins is limited and hardly biocompatible, here we investigate the possibility of using acrylates and vinylesters in an effort to expand the existing arsenal of biocompatible resins. Mechanical properties are tailorable by varying the crosslink density and by varying the spacer length. To facilitate rapid production of high-resolution prints we use masked SLA (mSLA) as an alternative to conventional SLA. mSLA cures an entire layer at a time and therefore uses less time to complete a print than conventional SLA. Additionally, with mSLA it takes the same time to make 10 prints as it would to make only one. Several formulations were prepared and tested for printability and mechanical strength.
MULTIFILE
Microbes like bacteria and fungi can grow on almost everything, including e.g. on a music CD made of aluminum and polycarbonate. How? By producing an optimal mixture of effective enzymes that degrade the material on which the microbes thrive. In this project we want to find and characterize microbes that have the ability to digest one of the most commercially successful but at the same time hard-to-degrade materials: furan-based bio-composite resin. To help the microbes to degrade this recalcitrant material, we first must open up the complex resin structure by using (mild) acidification, grinding, and/or UV light. Thus, with this project we aim to find an effective and sustainable way to safely and effectively dispose and recycle used bio-composite resins. Our findings will help to increase the circularity of bio-composite materials and as such decrease the environmental waste pressure.
It is known that several bacteria in sewage treatment plants can produce attractive quantities of biodegradable polymers within their cell walls (up to 80% of the cell weight). These polymers may consist of polyhydroxyalkanoates (PHA), a bioplastic which exhibits interesting characteristics like excellent biodegradation, low melting point and good environmental footprint. PHA bioplastics or PHBV are still quite expensive because cumbersome downstream processing steps of the PHAcontaining bacteria are needed before PHA can be applied in products. In this proposal, the consortium investigates the possibilities for eliminating these expensive and environmentally intensive purification steps, and as a result contribute to speeding up the up-take of PHA production of residual streams by the market. The objective of the project is to investigate the possibilities of direct extrusion of PHAcontaining bacteria and the application opportunities of the extruded PHA. The consortium of experienced partners (Paques Biomaterials, MAAN Group, Ecoras and CoEBBE) will investigate and test the extrusion of different types of PHA-containing biomass, and analyse the products on composition, appearance and mechanical properties. Moreover, the direct extrusion process will be evaluated and compared with conventional PHA extraction and subsequent extrusion. The expected result will be a proof of principle and provide an operational window for the application of direct extrusion with PHA-containing biomass produced using waste streams, either used as such or in blends with purified PHA. Both the opportunities of the direct extrusion process itself as well as the application opportunities of the extruded PHA will be mapped. If the new process leads to a cheaper, more environmentally friendly produced and applicable PHA, the proof of principle developed by the consortium could be the first step in a larger scale development that could help speeding up the implementation of the technology for PHA production from residual streams in the market.
Treatment of crops with insecticides remains essential because globally more than 75 billion dollars is lost through crop destruction by invasive insects. However it is accompanied by severe disadvantages including i. increasing resistance of the target insects against insecticides and ii. the undesired lethality of beneficial insects such as bees and other pollinator species. The significant reduction of insect species during the last years, at least partly caused by the presently available insecticides has also effects on insect-eating species. Last but not least the presence of residual amount of insecticides in the environment (soil and plants), because of poor (bio)degradation, is another distinct disadvantage. Therefore, the overall aim of this proposal is to design and synthesize peptide based biopesticides. This should lead to Nature inspired green alternatives for insect control because "Peptides" are the small equivalents of "proteins", that are biomolecules, which are universally present in all organisms and subject to their natural biodegradation mechanisms, as well as also chemically degraded in the soil (water, heat, UV, oxygen). Design and synthesis of these environmentally benign compounds will eventually take place in a founded company called "INNOVAPEPLINE". Evaluation of candidate peptide based biopesticides can be carried out in collaboration with a recently founded company (spin-out of the University of Glasgow) called "SOLASTA BIO" (founders professors Shireen Davies, Julian Dow and Rob Liskamp) and/or with other (third) parties such as the University of Wageningen. Upon recent identification of promising candidate compounds ("leads"), chemical optimization studies of leads will take place, followed by evaluation in field trials. In this proposal design, synthesis and chemical optimization of the biological activity of new peptides and development of methods to monitor their biodegradation rate will take place. Thereby expanding the repertoire of peptide based biopesticides. (292 words)